ООО «Компания «АЛС и ТЕК»

УТВЕРЖДЕН 643.ДРНК.501590-01 32 01-ЛУ

MSAN-ALS

Руководство системного программиста

643.ДРНК.501590-01 32 01

(CD-R)

Листов 115

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	<u>6</u>
1.Общие сведения о системе	7
2.СТРУКТУРА СИСТЕМЫ.	8
<u>2.1.Технические характеристики.</u>	8
2.1.1. Технические характеристики MSAN-ALS	8
2.1.1.1.Параметры цепей электропитания	9
2.1.1.2.Параметры ТЧ канала абонентских линий	9
2.1.2.Цифровые интерфейсы	10
<u>2.1.2.1.Цифровой интерфейс G703</u>	10
2.1.2.2.Цифровой интерфейс АЛС.8192М.	10
<u>2.1.2.3.Цифровой интерфейс ИКМ-15</u>	11
2.1.2.4.Ethernet	11
2.1.2.5.Long Ethernet	11
2.1.2.6.SHDSL	12
2.1.2.7.ADSL	13
2.1.2.8.VDSL2	13
З.НАСТРОЙКА СИСТЕМЫ	14
3.1.Общее описание получения доступа к платам	14
3.1.1.Подключение по СОМ-порту	14
3.1.2.Подключение по протоколу Telnet	15
3.1.3.Подключение по протоколу SSH	17
3.1.4.Подключение по протоколу НТТР (Web-конфигуратор)	20
3.2.Плата МКС-IP	20
3.2.1.Подключение по СОМ-порту	20
3.2.2.Подключение по протоколу Telnet	20
3.2.3.Перед началом крнфигурирования	21
3.2.4.Назначение IP-адресов.	21
<u>3.2.5.Конфигурирование VLAN</u>	22
<u>3.2.6.Конфигурирование «мостов»</u>	22
3.2.7.Обновление ПО.	22
<u>3.2.8.Обновление ПО через USB flash</u>	<u>24</u>
3.2.8.1.Порядок проведения обновления	25
3.2.8.1.1.Подготовка к обновлению	25
<u> 3.2.8.1.2.Обновление — 1ый этап (подготовка разделов внутреннего накопителя)</u>	25
<u>3.2.8.1.3.Обновление — 2ой этап (обновление ПО)</u>	25
3.2.8.1.4.Обработка ошибок 2го этапа	26
<u>3.2.8.1.5.Создание инсталляционной USB flash</u>	26
<u>3.3.Типовые сетевые настройки</u>	30
<u>3.3.1. Назначение одного IP-адреса для управления и телефонии, без VLAN</u>	30
<u> 3.3.2. Назначение отдельного IP-адреса для управления и отдельного — для телефонии, (</u>	<u>без</u>
<u>VLAN</u>	30
<u>3.3.3. Назначение одного IP-адреса и одного VLAN-ID для управления и телефонии</u>	<u>31</u>
<u>3.3.4. Назначение одного IP-адреса и разных VLAN-ID для управления и телефонии</u>	<u>31</u>
<u> 3.3.5. Назначение разных IP-адресов (из разных подсетей) и разных VLAN-ID для</u>	
управления и телефонии	32
<u> 3.3.6.Назначение отдельного VLAN-ID и IP-адреса для голосового трафика (RTP)</u>	32
3.3.7.Последовательность действий при конфигурировании при подключении по протоко	<u>олу</u>
Н.248	33

3.3.7.1. Отключение служб контроллера шлюза, маршрутизации и тарификации	33
3.3.7.2.Настройка сетевых параметров шлюза доступа	33
3.3.7.3.Указание используемых на сети речевых кодеков	34
3.3.7.4.Указание подключенных абонентских плат и комплектов	34
3.3.7.5.Настройка идентификации (именования) фиксированных окончаний	35
3.3.7.5.1.Запуск шлюза	36
3.3.8.Последовательность действий при конфигурировании при полключении по протокол	IV
SIP	36
3381 Настройка сетевых параметров шлюза доступа и контроллера шлюза	36
3 3 8 2 Указание используемых на сети речевых колеков	37
3 3 8 3 Указание шаблонов возможных набираемых телефонных номеров	37
3 3 8 4 Настройка илентификации (именования) фиксированных окончаний	38
3 3 8 5 Настройка абонентских портов	39
3 3 8 6 Настройка маршрутизации	40
3.3.8.7 Запуск контролдера шлюза и шлюза доступа	<u>+0</u> 41
3 3 8 8 Настройка службы тарификации «тос radius»	<u>+1</u> //1
	<u>+1</u> //2
3 3 10 Настройка дво	<u>42</u>
2 2 11 Sorvice SNMD	<u>44</u> /5
2 2 11 1 Hactroque a SNMD	45
<u>3.3.11.1.1.11астроика протокола этмиг</u>	<u>40</u> 47
2.2.12. Сервис резервирования	<u>4/</u> /0
<u>5.5.15.5авершающие деиствия после настроики</u>	40
$2.4.1 \Pi a Ta ADSL-52$	49
<u>3.4.1.ПОДКЛЮЧЕНИЕ ПО СОМ-ПОРТУ</u>	49
<u>3.4.2.Подключение по протоколу тепле</u>	49
<u>3.4.3.Подключение по протоколу НТТР (web-конфигуратор)</u>	49
3.4.4.Перед началом конфигурирования	50
<u>3.4.5.3аводская конфигурация.</u>	50
<u>3.4.6. Назначение IP-адреса.</u>	51
<u>3.4.6.1.Конфигурация без использования VLAN.</u>	51
<u>3.4.6.2.Конфигурация с использованием VLAN</u>	52
3.4.7. Назначение шлюза по умолчанию	53
<u>3.4.8.Смена режима работы портов Uplink</u>	
<u>3.4.9.Использование каскадирования портов Uplink</u>	
<u>3.4.10.Резервирование портов Uplink</u>	<u>55</u>
<u>3.4.11.Настройка портов ADSL с использованием профилей</u>	
<u>3.4.12.Запуск службы Web-конфигуратора</u>	<u>58</u>
3.4.13.Service SNMP	59
<u>3.4.13.1.Настройка протокола SNMP</u>	<u>59</u>
<u>3.4.14.Обновление ПО</u>	<u>61</u>
<u>3.4.15.Обновление ПО</u>	<u>62</u>
<u>3.5.Плата VDSL-24</u>	<u>65</u>
<u>3.5.1.Подключение по СОМ-порту</u>	<u>65</u>
<u>3.5.2.Подключение по протоколу Telnet</u>	<u>65</u>
<u>3.5.3.Перед началом конфигурирования</u>	<u>65</u>
<u>3.5.4.Заводская конфигурация</u>	<u>66</u>
<u>3.5.5.Управление портами</u>	<u>66</u>
<u>3.5.6.Назначение IP адреса</u>	67
<u>3.5.6.1.Настройка получения IP адреса от DHCP сервера</u>	<u>67</u>
3.5.6.2.Назначение шлюза по умолчанию	<u>68</u>
<u>3.5.7.Назначение VLAN в том числе на IP управления</u>	68

<u>3.5.7.2.Назначение VLAN на портах</u>	69
<u>3.5.7.2.1.Пример: разделение портов на виртуальные подсети</u>	<u>69</u>
<u>3.5.7.2.2.Пример: разделение портов на виртуальные подсети в сети с поддержкой</u>	
VLAN	<u>70</u>
<u>3.5.7.2.3.Пример: настройка Double Vlan(QinQ)</u>	<u>71</u>
3.5.8.Обновление ПО	71
3.5.9.Типовые конфигурации и схемы	72
3.5.9.1.Организация Private Edge для изоляции абонентских портов друг от друга	72
3.5.9.2.Настройка RSTP	73
3.5.9.3.Настройка IGMP, Multicast forwarding	73
3.5.9.4.Настройка IP ACL	73
<u>3.5.9.5.Настройка MAC ACL</u>	74
3.5.9.6.Авторизация по RADIUS	74
3.5.9.7.QoS.	75
3.6.Плата SHDSL-16EFM	75
3.6.1.Подключение по СОМ-порту	75
3.6.2.Подключение по протоколу ssh	76
3.6.3.Перед началом конфигурирования	76
	77
	77
3.6.5.1.Конфигурация без использования VLAN	77
3.6.6. Конфигурация с использованием VLAN.	
3.6.7. Назначение шлюза по умолчанию.	
3.6.8.Обновление ПО	80
3.6.8.1. Установка образов через загрузчик	80
3.6.9.Удаленное обновление через WEB-интерфейс	83
<u></u>	84
3.7.1.Подключение к устройству по протоколу Ethernet	84
3.7.1.1.Настройка компьютера программиста	85
3.7.2.Конфигурирование	86
3.7.3.Удаленное обновление ПО через WEB-интерфейс	86
3.8.Платы АЛС-24200, АЛС-24300, АЛС-24400L	87
3.8.1.Подключение по СОМ-порту	87
3.8.2.Подключение по протоколу Telnet	87
3.8.3.Перед началом конфигурирования	87
3.8.4.Заводская конфигурация.	88
3.8.5. Управление портами	89
3.8.6.Назначение IP адреса	90
3.8.6.1.Настройка получения IP адреса от DHCP сервера	90
3.8.6.2.Назначение шлюза по умолчанию	91
3.8.7.Назначение VLAN в том числе на IP управления	91
3.8.7.1.Назначение VLAN на IP управления	91
3.8.7.2.Назначение VLAN на портах	92
3.8.7.2.1.Пример: разделение портов на виртуальные подсети	92
3.8.7.2.2.Пример: разделение портов на виртуальные подсети в сети с поддержкой	
VLAN	93
3.8.7.2.3.Пример: настройка Double Vlan(OinO)	94
3.8.8.Обновление ПО	95
3.8.9.Типовые конфигурации и схемы	95
3.8.9.1.Организация Private Edge для изоляшии абонентских портов друг от друга	95
3.8.9.2.Настройка RSTP	
3.8.9.3.Настройка IGMP, Multicast forwarding	96

<u> 3.8.9.4.Настройка IP ACL</u>	<u>96</u>
<u>3.8.9.5.Настройка MAC ACL</u>	<u>97</u>
<u>3.8.9.6.Авторизация по RADIUS</u>	<u>97</u>
<u>3.8.9.7.QoS</u>	<u>98</u>
Приложение 1	<u>99</u>
Назначение контактов разъема RJ-45	99
Приложение 2	<u>101</u>
Назначение контактов разъема RS-232 (COM)	101
Приложение 3	102
Назначение контактов 96-контактного разъема для абонентских линий платы ADSL32	102
Приложение 4	103
Назначение контактов 96-контактного разъема для абонентских линий платы VDSL-24	103
Приложение 5	104
Назначение контактов 96-контактного разъема для абонентских линий платы АЛС-2420	0104
Приложение 6	<u>105</u>
Назначение контактов нижнего 96-контактного разъема плат SHDSL-16EFM и ПВДП	105
Приложение 7	<u>106</u>
Назначение контактов 96-контактного разъема платы АЛС-АУ	106
Приложение 8	<u>107</u>
Кроссировка плинтов АЛС-АУ	107
Приложение 9	<u>108</u>
Назначение контактов 96-контактного разъема платы MKC-IP	108
Приложение 10	<u>110</u>
Назначение контактов сплиттера, вставляемого в плинт	110
Приложение 11	<u>111</u>
Типовая схема использования сплиттеров	111
Сокращения.	112

введение

Настоящее руководство содержит сведения, необходимые для обеспечения действий системного программиста при установке и настройке устройства мультисервисного узла доступа (MSAN-ALS).

В документе содержатся общие сведения о системе, описан порядок получения доступа к ней, настройки системы, а также ее диагностики.

1. ОБЩИЕ СВЕДЕНИЯ О СИСТЕМЕ

Мультисервисный узел доступа MSAN-ALS, является комплексом аппаратных средств и программного обеспечения, с функциями гибкого коммутатора, предназначенным для использования на единой сети электросвязи в качестве мультисервисного узла доступа.

MSAN-ALS является универсальным сетевым элементом с комбинированным коммутационным полем. Внутри узла поддерживается коммутация каналов и коммутация пакетов. За счет этого MSAN-ALS может легко интегрироваться в существующие телефонные сети общего пользования, организовывать мультисервисные сети для предоставления новых услуг, включая услуги Интернет, и служить для объединения сетей обоих типов.

MSAN-ALS адаптирован к существующим цифровым и аналоговым, высоко- и низкоскоростным системам передачи, что обеспечивает легкую интеграцию в существующие городские, сельские и корпоративные сети электросвязи с целью их модернизации и предоставления абонентам на всех уровнях сетевой иерархии полного спектра современных услуг.

7

2. СТРУКТУРА СИСТЕМЫ

2.1. Технические характеристики

2.1.1. Технические характеристики MSAN-ALS

Таблица 1

Наименование параметра	Размерность	Значение
Напряжение питания (вариант 60В)	В	от 54 до 72
Напряжение питания (вариант 48В)	В	от 44 до 56
Мощность, потребляемая одним АК в рабочем режиме, не более	Вт	0.9
Мощность, потребляемая одним АК в дежурном режиме, не более	мВт	80
Максимальная потребляемая мощность платы АЛС-24200	Вт	50
Максимальная потребляемая мощность платы АЛС-24300	Вт	30
Максимальная потребляемая мощность платы АЛС-24400L	Вт	35
Максимальная потребляемая мощность платы SFP-8	Вт	20
Максимальная потребляемая мощность блока коммутатора АЛС- 24200	Вт	100
Максимальная потребляемая мощность блока коммутатора АЛС- 24300	Вт	70
Максимальная потребляемая мощность платы SHDSL-16EFM	Вт	50
Температура окружающей среды	⁰ C	от +9 до +40
Влажность воздуха при Т не более 25ºС	%	от 20 до 95
Кратность наращивания АЛ	шт.	32
Управляющий процессор		Geode LX800
Принимаемый тип набора номера		Импульсный, частотный

Технические характеристики MSAN-ALS

Наименование параметра	енование параметра Размерность Зл			
Нагрузка на 1 АЛ		0.242 Эрланга		
Нагрузка на 1 СЛ		0.8 Эрланга		
Поддерживаемые интерфейсы		ИКМ-30, ИКМ-15, C2, Fast Ethernet, Gigabit Ethernet, 10G Ethernet, ADSL, ADSL2, ADSL2+, SHDSL(TC-PAM16/TC-PAM32)		

2.1.1.1. Параметры цепей электропитания

Таблица 2

Электрические параметры цепей

		Норма.		
паименование параметра, единицы измерения	Мин.	Ном.	Макс.	
Напряжение питания (вариант 60 В), В	54	60	72	
Напряжение питания (вариант 48 В), В	44	48	56	
Потребление тока на №, А			0.004	
Пульсации, мВ псоф.			2	
Пульсации до 300Гц, мВ			250	
Пульсации от 300Гц до 100кГц			10	
Напряжение отключения (вариант 60 В), В	54			
Напряжение отключения (вариант 48 В), В	44			
Напряжение включения (вариант 60 В), В			54	
Напряжение включения (вариант 48 В), В			44	

2.1.1.2. Параметры ТЧ канала абонентских линий

Таблица З

Наименование параметра	Значение
Полоса ТЧ канала	300Гц – 3400Гц
Частота квантования	8000Гц ±50ррм
Закон квантования	Α
Регулировка выхода	8 уровней от 0 дБ до –7 дБ, устанавливается программно, индивидуально по каждому каналу
Напряжение питания	60 B ±20%

Параметры ТЧ канала абонентских линий

2.1.2. Цифровые интерфейсы

2.1.2.1. Цифровой интерфейс G703

Таблица 4

Цифровой интерфейс G703

Наименование параметра	Значение
Тип линейного кода.	HDB3, AMI
Количество каналов ТЧ.	30
Скорость передачи.	2048 Кбит/с
Уровень передачи	3B ±10%
Уровень приема, мин.	-12 дБ
Импеданс линии	120 Ом

2.1.2.2. Цифровой интерфейс АЛС.8192М

Таблица 5

Цифровой интерфейс АЛС.8192М

Наименование параметра	Значение		
Тип линейного кода.	Manchester 2		
Количество каналов ТЧ.	125		
Скорость передачи.	8192 Кбит/с		
Уровень передачи	5B ±10%		
Уровень приема, мин	-12 дБ (1В)		
Импеданс линии	120 Ом		

2.1.2.3. Цифровой интерфейс ИКМ-15

Таблица 6

Цифровой интерфейс ИКМ-15

Наименование параметра	Значение
Тип линейного кода.	OMC, AMI, HDB3
Количество каналов ТЧ.	15
Скорость передачи.	1024 Кбит/с
Уровень передачи	3B ±10%
Уровень приема, мин.	-12 дБ
Импеданс линии	120 Ом

2.1.2.4. Ethernet

- 10BASE-T Ethernet;
- 802.3u 100BASE-TX Fast Ethernet;
- 802.3ab 1000BASE-T Gigabit Ethernet;
- 802.3z 1000BASE-X Gigabit Ethernet;
- 802.3ae-2002 10GBASE-LR 10Gigabit Ethernet

2.1.2.5. Long Ethernet

Таблица 7

N⁰	Тип кабеля	Число пар	Скорость доступа	Длина линии	Режим
1	Категория 5	1 пара	100 Мбит/с	270 м	LE100-1C5
2	Категория 5	2 пары	100 Мбит/с	300 м	LE100-2C5
3	Категория 5	4 пары	100 Мбит/с	500 м	LE100-4C5
4	ТПП-хх*2*0,5	1 пара	100 Мбит/с	140 м	LE100-1AWG24
5	ТПП-хх*2*0,4	1 пара	100 Мбит/с	100 м	LE100-1AWG26
6	Категория 5	2 пары	100 Мбит/с	100 м	Стандартный FE
7	Категория 5	4 пары	1000 Мбит/с	100 м	Стандартный GE
8	ТПП-хх*2*0,5	1 пара	10 Мбит/с	500 м	LE10-1AWG24
9	ТПП-хх*2*0,4	1 пара	10 Мбит/с	500 м	LE10-1AWG26
10	Категория 5	1пара	10 Мбит/с	500 м	LE10-1C5
11	Категория 5	2 пары	10 Мбит/с	500 м	LE10-2C5

Цифровой интерфейс Long Ethernet

2.1.2.6. SHDSL

Таблица 8

SHDSL - интерфейсы

	ETSI SDSL (ETSI TS 101 524	4 V 1.2.1)
	ETSI SDSL.bis (ETSI 101 524 V 1.2.2)	
	ITU G.shdsl (ITU-T G.991.2)	
Поддерживаемые стандарты	ITU G.shdsl.bis(ITU-T G.991.2(2004))	
	ITU G.hs (ITU-T G.994.1)	
	IEEE EFM (IEEE 802.3-2004))
Количество используемых пар в одной системе	1	
Линейный код	16TCPAM	32TCPAM
Максимальная линейная скорость передачи по одной паре, В, кбит/с, не более	3856	5704
Максимальная линейная скорость передачи по одной паре (расширенный диапазон) В, кбит/с, не более	5704	11328
Номинальное нагрузочное сопротивление, Ом	135	
Затухание асимметрии входной/выходной цепей на частоте F*, соответствующей максимальной линейной скорости передачи, дБ, не менее	40	
Затухание отражения входной/выходной цепей передачи в диапазоне частот , дБ, не менее	14(от 20 кГц до F*)	12(от 50 кГц до F*)
Мощность сигнала, дБм, не более	14,5	
Спектральная плотность мощности сигнала, дБм/Гц, в диапазоне частот: ниже F*, не более выше 2F, не более	-40 -100	-42 -102
Допустимое напряжение шума в диапазоне от 0,3 до 1500 кГц в точке приема при максимальном затухании линии**, мкВ/ ^H Гц, не менее	10	·
Протокол АТМ	RFC 2684 (Multiple Protocol over AAL5)	

	Мультиплексирование VC и LLC	
	Поддержка Multiple PVC	до 8 PVC на порт
		привязка PVC к VLAN (один к одному)

2.1.2.7. ADSL

Таблица 9

Стандарт	Общепринятое обозначение	Downstream rate (к абоненту)	Upstream rate (от абоненту)
ANSI T1.413	ADSL	8 Mbit/s	1.0 Mbit/s
ITU G.992.1	ADSL (G.DMT)	12 Mbit/s	1.3 Mbit/s
ITU G.992.1 Annex A	ADSL over POTS	12 Mbit/s	1.3 Mbit/s
ITU G.992.1 Annex B	ADSL over ISDN	12 Mbit/s	1.3 Mbit/s
ITU G.992.2	ADSL Lite (G.Lite)	4.0 Mbit/s	0.5 Mbit/s
ITU G.992.3/4	ADSL2	12 Mbit/s	1.0 Mbit/s
ITU G.992.3 Annex L	RE-ADSL2	5 Mbit/s	0.8 Mbit/s
ITU G.992.5	ADSL2+	24 Mbit/s	1.0 Mbit/s
ITU G.992.5 Annex M	ADSL2+M	24 Mbit/s	2.0 Mbit/s

ADSL интерфейсы

2.1.2.8. VDSL2

Таблица 10

VDSL2 интерфейсы

Профиль	Ширина спектра (МГц)	Количество несущих	Ширина спектра несущей (КГц)	Мощность (dBm)	Максималь ная скорость (Мбит/с)
8a	8,832	2048	4,3125	+17,5	50
8b	8,832	2048	4,3125	+20,5	50
8c	8,5	1972	4,3125	+11,5	50
8d	8,832	2048	4,3125	+14,5	50
12a	12	2783	4,3125	+14,5	68
12b	12	2783	4,3125	+14,5	68
17a	17,664	4096	4,3125	+14,5	100
30a	30	3479	8,625	+14,5	100

3. НАСТРОЙКА СИСТЕМЫ

Для мониторинга и управления в MSAN-ALS используется, протокол SNMP (v1, v2, v3), интерфейсы CLI и WEB.

SNMP в основном используется для автоматизированного мониторинга и частично для сервисного обслуживания.

WEB интерфейс используется для быстрой визуальной настройки и графического представления текущего состояния.

CLI интерфейс для более точной настройки и гарантированно несет в себе полный функционал устройств. Также через CLI осуществляется первичная настройка MSAN-ALS.

3.1. Общее описание получения доступа к платам

3.1.1. Подключение по СОМ-порту

Этот способ подключения лучше всего применять для первичной настройки устройства. Для подключения нужно соединить последовательный порт рабочей станции, с которой будет осуществляться конфигурирование, с последовательным портом устройства при помощи консольного кабеля, имеющего соответствующие разъемы на каждом конце.

Начальные установки последовательного порта устройства следующие:

- Скорость последовательного порта (Baud Rate): 115200,
- Биты данных (бит) (Data Bits): 8,
- Четность (Parity Bits): Нет (None),
- Стоповый бит (Stop Bit): 1,
- Управление потоком (Flow Control): Нет (None).

Далее необходимо сконфигурировать терминал рабочей станции для использования этих установок перед входом в систему устройства. Ниже приведен пример настройки терминала в Windows (программа Hyper Terminal в Windows 95 / 98 / 2000 / XP):

- **1.** Выберите из меню «Пуск»: Программы → Стандартные (Accessories) → Связь (Communication) → Hyper Terminal.
- **2.** Установите «Имя» (Name) и «Значок» (Icon) в Описании подключения (Connection Description).
- 3. Выберите в поле «*Connect To*» СОМ-порт, через который соединены ПК и устройство.
- 4. Установите указанные выше настройки последовательного порта в диалоге «Свойства

COMx» (COMx Properties).

5. Нажмите кнопку «*OK*».

Настройки СОМ-порта
Свойства: СОМ1 ? Х
Параметры порта
<u>С</u> корость (бит/с): 115200 💌
Биты данных: 8
<u>Ч</u> етность: Нет
Стоповые биты: 1
<u>У</u> правление потоком: Нет
<u>В</u> осстановить умолчания
ОК Отмена Применить
Рисунок 1

Если соединение прошло успешно, на экране терминала отобразится приглашение к вводу имени пользователя (login) и пароля (password).

После входа в систему отобразится приглашение командной строки CLI.

3.1.2. Подключение по протоколу Telnet

Подключение этим способом удобнее предыдущего, поскольку при этом не требуется находиться около устройства во время конфигурирования из-за ограниченной длины кабеля для СОМ-порта.

Для подключения к блоку при помощи протокола Telnet необходимо, чтобы ПК был связан с любым Ethernet-портом устройства при помощи сетевого кабеля (UTP категории 5) или через коммутатор Ethernet. Также нужно знать IP-адрес устройства.

Для того чтобы управлять платой через Ethernet необходимо назначить IP адреса на устройстве и управляющем ПК из одной подсети (например 172.16.0.0) как показано ниже:

юйства: Протокол Интернета (Т	CP/IP)
Общие	
Параметры IP могут назначаться а поддерживает эту возможность. В IP можно получить у сетевого адми	автоматически, если сеть противном случае параметры инистратора.
○ Получить IP-адрес автоматиче	вски
г 🖲 <u>И</u> спользовать следующий IP-	адрес:
[Р-адрес:	172 . 16 . 1 . 66
<u>М</u> аска подсети:	255.255.0.0
Основной <u>ш</u> люз:	· · ·
С Получить адрес DNS-сервера	автоматически реса DNS-серверов:
Предпочитаемый DNS-сервер:	
Альтернативный DNS-сервер:	
	Дополнительно ОК Отмена

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping. Для этого нужно выполнить следующие действия (для OC Windows и блока с загруженной заводской конфигурацией):

- **1.** Выберите из меню «Пуск»: Программы → Стандартные (Accessories) → Командная строка.
- **2.** В открывшемся окне введите команду ping <IpAdrr> (где <IpAddr> IP адрес устройства), например ping 172.16.1.10, и нажмите клавишу Enter.
- **3.** Если на экране появилась надпись «Превышен интервал ожидания для запроса», то это означает, что устройство не доступно. В этом случае необходимо проверить настройки IP-протокола на ПК и подключение ПК к данному устройству.
- **4.** В случаю появления ответов от устройства тестирование настроек IP и доступности блока можно считать успешным.

Использование команды ping	
C:\WINNT\system32\cmd.exe	
Microsoft Windows 2000 [Версия 5.00.2195] (С) Корпорация Майкрософт, 1985-2000.	
C:>>ping 172.16.1.10	
Обмен пакетами с 172.16.1.10 по 32 байт:	
Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128 Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128 Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128 Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128	
Статистика Ping для 172.16.1.10: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь), Привлизительное время передачи и приема: наименьшее = Омс, наибольшее = Омс, среднее = Омс	Ţ
Рисунок 3	

Подключиться к устройству по сети можно с помощью утилиты telnet. Для этого нужно перейти к пункту меню Пуск (Start) -> Выполнить (Run). В качестве параметра программе нужно передать IP-адрес устройства. Например:

telnet 172.16.1.10

После подключения на терминале отобразится диалог входа в систему, где нужно ввести имя пользователя и пароль.

3.1.3. Подключение по протоколу SSH

Подключение этим способом удобнее предыдущего, поскольку при этом не требуется находиться около устройства во время конфигурирования из-за ограниченной длины кабеля для СОМ-порта.

Для подключения к блоку при помощи протокола SSH необходимо, чтобы ПК был связан с любым Ethernet-портом устройства при помощи сетевого кабеля (UTP категории 5) или через коммутатор Ethernet. Также нужно знать IP-адрес устройства.

Для того чтобы управлять платой через Ethernet необходимо назначить IP адреса на устройстве и управляющем ПК из одной подсети (например 192.168.0.0) как показано ниже:

установка 1Р-0	юреса оля ПК
ойства: Протокол Интернета	a (TCP/IP)
Общие	
Параметры IP могут назначаться а поддерживает эту возможность. В і IP можно получить у сетевого адми	зтоматически, если сеть противном случае параметры нистратора.
🔘 Получить IP-адрес автоматиче	ски
 Использовать следующий IP-а; 	дрес:
ІР-адрес:	192.168.0.1
Маска подсети:	255.255.0
Основной шлюз:	
О Получить адрес DNS-сервера а	автоматически
🔞 Использовать следующие адр	еса DNS-серверов:
Предпочитаемый DNS-сервер:	
Альтернативный DNS-сервер:	· · ·
	Дополнительно.
	ОК Отмен
_	

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping. Для этого нужно выполнить следующие действия (для OC Windows и блока с загруженной заводской конфигурацией):

- **1.** Выберите из меню «Пуск»: Программы → Стандартные (Accessories) → Командная строка.
- 2. В открывшемся окне введите команду ping <IpAdrr> (где <IpAddr> IP адрес устройства), например ping 192.168.0.180 и нажмите клавишу Enter.
- 3. Если на экране появилась надпись «Превышен интервал ожидания для запроса», то это означает, что устройство недоступно. В этом случае необходимо проверить настройки IP-протокола на ПК и подключение ПК к данному устройству.
- **4.** В случаю появления ответов от устройства тестирование настроек IP и доступности блока можно считать успешным.

Использование команды ping	
G C:\WINDOWS\system32\cmd.exe	- 🗆 🗙
Microsoft Windows XP [Версия 5.1.2600] <С) Корпорация Майкрософт, 1985—2001.	_
C:\Documents and Settings\Admin>ping 192.168.0.180	
Обмен пакетами с 192.168.0.180 по 32 баи́т:	
Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128 Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128 Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128 Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128	
Статистика Ping для 192.168.0.180: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь), Приблизительное время приема-передачи в мс: Минимальное = Омсек, Максимальное = 0 мсек, Среднее = 0 мсек	
C:\Documents and Settings\Admin>_	T
Рисунок 5	

5. Подключиться к устройству по сети можно с помощью терминала поддерживающего ssh. например PuTTY:

Использование клиента РиТТҮ		
😤 PuTTY Configuration		
Category:		
 Session Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection Colours Connection Data Proxy Telnet Rlogin SSH Serial 	Basic options for your PuTTY session Specify the destination you want to connect to Host Name (or IP address) Port 192.168.0.180 22 Connection type: Baw Baw Ielnet Raw Ielnet Raw Ielnet Basic options Serial Load, save or delete a stored session Saved Sessions Default Settings Load Save Delete Close window on exit: Image: Only on clean exit	
About	Pen	
	Рисунок 6	

После подключения на терминале отобразится диалог входа в систему, где нужно ввести имя пользователя и пароль.

3.1.4. Подключение по протоколу НТТР (Web-конфигуратор)

Сначала нужно убедиться, что выполняются следующие требования:

- ПК может установить физическое соединение с устройством. Для этого необходимо, чтобы компьютер и устройство имели соответствующие IP-адреса из одной подсети.
- IP-адрес устройства не использовалось другим сетевым устройством. В противном случае потребуется отключить его от сети, прежде чем вы сможете задать новый IPадрес для устройства.

Для того чтобы соединиться с устройством необходимо выполнить следующие шаги:

- **1.** Запустите Web-браузер.
- **2.** В адресной строке введите "http://" и текущий IP-адрес устройства. Например, при использовании IP-адреса 172.16.1.10:
- 3. http://172.16.1.10
- 4. Должна отобразиться страница входа в систему.
- 5. Введите имя пользователя и пароль.
- **6.** Если аутентификация прошла успешно, произойдет переход к главной странице Webконфигуратора.

Примечание.

Над полем «Имя пользователя» может отображается сообщение «Вход в систему уже осуществлен». Оно означает, что в данный момент кто-то уже работает в Webконфигураторе и, возможно, производит настройку. Поэтому во избежание одновременного изменения одних и тех же параметров хорошей идеей будет подождать, пока пользователь выйдет из системы, хотя это и не обязательно.

3.2. Плата МКС-ІР

3.2.1. Подключение по СОМ-порту

Для подключения по СОМ-порту см. п. 3.1.1 Подключение по СОМ-порту.

Имя пользователя по умолчанию - Superuser, пароль - 123456. При желании пароль можно изменить после входа в систему.

3.2.2. Подключение по протоколу Telnet

Для подключения по протоколу Telnet см. п. 3.1.2 Подключение по протоколу Telnet.

IP-адрес нужно настроить, используя подключение к блоку при помощи COM-порта.

3.2.3. Перед началом крнфигурирования

Чтобы начать конфигурировать, необходимо определиться со следующими параметрами:

- **1.** Какие IP-адреса будут назначены для управления MSAN-ALS устройством и для телефонии.
- 2. Будет ли использоваться VLAN?
- **3.** В случае, если будет использоваться VLAN необходимо знать, какой VLAN Id будет использоваться для управления устройством, а какой для телефонии.
- 4. По какому протоколу будет подключаться MSAN-ALS H.248 или SIP.
- 5. В случае подключения по протоколу Н.248, необходимо выяснить следующее:
 - ІР-адрес контроллера шлюза (софтсвича);
 - перечень используемых на сети речевых кодеков;
 - количество абонентских портов, расположение абонентских плат в корзине соответственно расшитому кроссу;
 - шаблон идентификации (именования) фиксированных окончаний (end-point в терминологии SI2000).
- 6. В случае подключения по протоколу SIP, необходимо выяснить следующее:
 - количество абонентских портов, расположение абонентских плат в корзине соответственно кроссу;
 - перечень используемых на сети речевых кодеков;
 - внутреннюю телефонную нумерацию;
 - всю возможную телефонную нумерацию на сети;
 - IP-адрес узлового софтсвича, к которому подключается MSAN-ALS;
 - IP-адрес компьютера, на котором будет работать служба тарификации «WebNibs».

3.2.4. Назначение IP-адресов

Можно назначить *несколько* IP-адресов на имеющиеся в конфигурации шлюза интерфейсы. По умолчанию имеется 2 интерфейса: lo (локальный интерфейс, настройки которого изменять не рекомендуется) и eth0 (соответствует самому нижнему порту на передней панели платы MKC-IP). Назначение IP-адресов производится в контексте «ip router», перейти в который можно по команде:

context ip router

IP-адрес назначается командой:

ifconfig <ifname>[:<alias_name>] <ip-address> netmask <netmask> up

- где <ifname> - название интерфейса, на который назначается адрес, <alias_name> - название псевдонима(указывается, если на интерфейс назначается несколько адресов), <ip-address> - назначаемый IP-адрес, <netmask> - маска сети.

3.2.5. Конфигурирование VLAN

Добавление VLAN-ID также производится в контексте «ip router» командой:

vconfig add <ifname> <vlan-id>

– где <ifname> - название интерфейса, на который назначается VLAN, <vlan-id> идентификатор назначаемого тэга. После этого к списку доступных интерфейсов добавляется новый интерфейс с именем <ifname>.<vlan-id>.

3.2.6. Конфигурирование «мостов»

Существует вероятность, что в конфигурацию будет необходимо добавить «мост» («bridge») для объединения нескольких интерфейсов и присвоения им общего IP-адреса. Конфигурирование «мостов» также производится из контекста «ip router».

Добавление нового «моста» производится командой:

brctl addbr <brname> — где <brname> - имя добавляемого «моста». После этого к списку доступных интерфейсов добавляется новый интерфейс с именем <brname>.

Добавление интерфейса в «мост» производится командой:

brctl addif <brname> <ifname>

- где <brname> - имя существующего в конфигурации «моста», в который добавляется интерфейс, <ifname> - имя существующего в конфигурации интерфейса, добавляемого в «мост».

3.2.7. Обновление ПО

Обновления программного обеспечения MSAN-ALS устанавливаются только по сети с использованием протокола TFTP. При этом устройство выступает в качестве клиента, а рабочая станция, с которой производится обновление, — в качестве сервера. Соответственно, на ПК должен быть установлен и запущен сервер TFTP. Если потребуется, его можно загрузить с сайта «Компании АЛСиТЕК» (www.alstec.ru).

После установки сервера необходимо указать его корневую директорию, содержимое которой будет доступно для загрузки. Для этого нужно в меню «*File*» выбрать пункт «*Configure*», перейти на вкладку «*TFTP Root Directory*» и указать диск и директорию. Ниже показан пример данного окна:

Окно выбора корневой директории
сервера ТҒТР
TFTP Server Configuration X TFTP Root Directory Security Advanced Security Auto-Close Log C: X
TFTP-Root
OK Cancel Help
Рисунок 7

Кроме того, на вкладке «Security» нужно выбрать пункт «Transmit and Receive files», для того чтобы включить возможность передачи и приема файлов с сервера.

Настройка параметров безопасности		
сервера TFTP		
TFTP Server Configuration		
TFTP Root Directory Security Advanced Security Auto-Close Log		
The TFTP Server can be configured to allow receiving of files only, transmitting of files only, or allow both, transmitting and receiving.		
C Receive only C Transmit only		
OK Cancel Help		
Рисунок 8		

Произведя указанные настройки, оставьте основное окно программы открытым.

В выбранную корневую директорию сервера нужно скопировать файл обновления.

После этого нужно подключиться к MSAN-ALS по протоколу Telnet или по COM-порту, войти в систему.

Внимание! Перед проведением обновления рекомендуется сохранить текущую конфигурацию, как на внутреннем накопителе, выполнив команду:

сору	running-config	nvram:<имя	конфигурации>
	так и на внешнем	tftp сервере,	выполнив команду:
сору	running-config	tftp:// <ip< td=""><td>сервера>/<имя конфигурации></td></ip<>	сервера>/<имя конфигурации>
	Примеры:		
сору	running-config	nvram:last-	-running-config

copy running-config tftp://192.168.0.1/last-running-config

Для проведения обновления необходимо выполнить выполнить следующие команды:

Таблица 11

Последовательность действий для установки обновления

Команда	Описание		
<pre>mks-ip\$> context mg shutdown</pre>	Выключить сервер MG		
<pre>mks-ip\$> context mgc shutdown</pre>	Выключить сервер MGC		
mks-ip\$> service snmp shutdown	Выключить сервис SNMP		
<pre>mks-ip\$> copy tftp://172.16.0.116/ update flash:</pre>	Копирование файла обновления update с cepвера TFTP с IP-адресом 172.16.0.116		
mks-ip\$> reboot	Перезапуск системы. Примечание. Перезагружать устройство можно не сразу после обновления, а когда будет удобно. Но следует помнить, что окончательно обновление будет установлено только после перезагрузки		

В процессе обновления на экран консоли будут выводиться принимаемые устройством байты файла обновления в качестве индикации. По завершении его установки на экране отобразится соответствующее сообщение.

3.2.8. Обновление ПО через USB flash

В сложных случаях, когда нет возможности обновить ПО через tftp, есть гарантированный способ обновления ПО, для этого необходима USB flash, объемом не менее 128 мб, и программа Recovery Manager.

В каких случаях может использоваться данный тип обновления:

- Блок не загружается и нет никакой информации о системе, при этом на СОМ порт ничего не выводится, отсутствует индикация.
- На блоке существуют повреждения разделов внутреннего накопителя.

- Как альтернатива обновлению через tftp, когда обновление через tftp трудно контролируемо, например удаленный объект.
- Иные случаи при которых нельзя произвести обновление через tftp.

Внимание: при обновление через USB flash, существует вероятность потери конфигурации и сброс всех настроек на фабричные, поэтому перед проведением данного типа обновления произведите дополнительное сохранение конфигурации блока на внешний tftp сервер.

3.2.8.1. Порядок проведения обновления

3.2.8.1.1. Подготовка к обновлению

- Подготовьте USB flash, переписав на нее инсталляционный образ при помощи Recovery Manager. (3.2.8.1.5.Создание инсталляционной USB flash).
- Выключите МКС-IР.
- Вставьте USB flash в гнездо usb1 или usb2 блока MKC-IP.
- Включите МКС-IР.
- Отслеживайте индикацию описанную в первом и втором этапах обновления (3.2.8.1.2. 3.2.8.1.3.).

3.2.8.1.2. Обновление — 1ый этап (подготовка разделов внутреннего накопителя)

В начале данного этапа происходит проверка разделов внутреннего накопителя, и если разделы существуют и не имеют ошибок, то данный этап пропускается, иначе:

- проходит световая индикация обозначающая начала этапа:
 - индикатор аварии включен 1 секунда;
 - индикатор аварии выключен 3 секунды;
- начинается подготовка разделов;
- индикатор аварии включен и горит до окончания подготовки разделов (2-5 минут);
- индикатор аварии выключен (несколько секунд) переход на 2ой этап.

3.2.8.1.3. Обновление — 2ой этап (обновление ПО)

Данный этап производит обновление ПО, ему может предшествовать этап 1, но это не обязательно. Перед началом данного этапа индикатор аварии выключен, но как только

начинается обновление ПО индикатор аварии включается и горит до окончания обновления или возникновения ошибки обновления.

В случае успешного обновления ПО, индикатор аварии отключается, и начинает мигать индикатор работа с интенсивностью 1 секунда зеленый, 1 секунда красный. После этого необходимо:

- выключить MKC-IP;
- вытащить USB flash;
- блок готов к работе.

3.2.8.1.4. Обработка ошибок 2го этапа

В процессе прохождения второго этапа возможны ошибки, после этого индикацией будет показан код ошибки и обновление перейдет на первый этап.

Коды ошибок:

- индикатор авария гаснет на 1 секунду и загорается на 4 секунды:
 - 2 цикла повторений индикации: проблемы при копировании ПО на внутренний накопитель:
 - 4 цикла повторений индикации: проблемы при обновлении загрузчика системы.

3.2.8.1.5. Создание инсталляционной USB flash

Для того, чтобы создать инсталляционную USB flash необходимо:

- USB Flash носитель объёмом не менее 128 Мб;
- Устройство чтения/записи USB Flash носителей;
- Персональный компьютер с установленной ОС Windows (версии не ниже 2000);
- Файл образа флеши (один из MKS-IP_HappyBaby_*.FMB);
- Программа VAIOSoft Recovery Manager V1.5.

Для начала необходимо распаковать все архивы с файлами-образами. После старта программы VAIOSoft Recovery Manager V1.5 в левом столбце необходимо выбрать диск, на который будет записываться образ.

643.Л	PHK	501	590-0	01	32	01
0.0.д	T T T T C	001	000	U I		υı

	Выбор диска для записи образа	
Recovery Manager V1.5		
Connected Devices	Select below option to perform operation Information Backup Restore Duplicate Recovery Format About Drive Details Device Name: Flash Disk Envice Name: Fill Fill	IC.
	Рисунок 9	

Затем в правой части окна программы необходимо выбрать вкладку с надписью «Restore».

Выбор вкладки «Restore»		
Recovery Manager V1.5		
Connected Devices	Select below option to perform operation	
(A:)	Information Backup Restore Duplicate Recovery Format About	
🖃 (G:) USB 2.0 Flash Disk		
	Device Info	
	Device: Flash Disk [G:] Capacity: 245 MB	
	- Progress Info-	
	Total Blocks: Current Block:	
	Helo Restore	
Pat. Pend.	🖄 VAIOSoft, Inc.	
	,	
Рисунок 10		

Далее нужно выбрать файл-образ, который будет перенесён на USB Flash носитель. Для

этого правее надписи «**Filename to restore:**» нужно нажать на кнопку с изображением каталога и выбрать в открывшемся окне нужный файл.

Omi	крытие каталога с образами
Recovery Manager V1.5	×
Connected Devices	- Select below option to perform operation
(A:) ⊡ (G:) USB 2.0 Flash Disk	Information Backup Restore Duplicate Recovery Format About
Pat. Pend.	Device Info Device: Rash Disk G: Capacity: 245 MB Filename to restore: Filename to restore: Progress Info Total Blocks: Current: Blocks: Current: Blocks: Eetore Kalosoft, Inc.
	Рисунок 11

	Выбор необходимого образа
Открыть	?×
Папка: 🗀	ри 🔽 🗢 🗈 📸 📰 т
MKC-IP_H	ppyBaby_r056.fmb
I	
<u>И</u> мя файла:	МКС-IP_НарруВаby_r056 <u>О</u> ткрыть
<u>Т</u> ип файлов:	Media Backup Files (*.FMB)
	Полько чтение
	//////////////////////////
	Рисунок 12

Затем нажать кнопку «Restore» и в открывшемся окне подтвердить начало переноса файла-образа, нажав кнопку «OK».

I	Чажатие кнопки "Restore"
Recovery Manager V1.5	
Connected Devices	Select below option to perform operation
(A:) (G:) USB 2.0 Flash Disk	Information Backup Restore Duplicate Recovery Format About
	Device Info Device: [Rash Disk [G:] Capacity: [245 MB Filename to restore: C:\Documents and Settings\test\Pa6oчий cron\pu\MKC-IP_ Progress Info
	Total Blocks: Current Block: Help Restore
Pat. Pend.	VAIOSoft, Inc.
	Рисунок 13

	Нажать «ОК»		
Recover	y Manager ¥1.5		
?	WARNING: Restore will delete all the contents in this media !!! Please close all the application(s) that are using this drive in order to perfectly restore this media. Click on OK to proceed (or) Click on Cancel to terminate now OK		
	Рисунок 14		

Когда процесс переноса завершится, нужно нажать «OK» и можно пользоваться USB Flash носителем для прошивания плат.

3.3. Типовые сетевые настройки

3.3.1. Назначение одного IP-адреса для управления и телефонии, без VLAN

Таблица 12

Последовательность действий для назначения IP-адреса 172.16.0.1 с маской 255.255.255.0 для управления и телефонии, без VLAN

Команда	Описание
<pre>mks-ip\$> context ip router</pre>	Переход в контекст «ip router»
mks-ip(cntx-ip)[router]# ifconfig eth0 172.16.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 172.16.0.1 на интерфейс eth0
<pre>mks-ip(cntx-ip)[router]# exit</pre>	Выход из контекста «ip router»

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping.

3.3.2. Назначение отдельного IP-адреса для управления и отдельного — для телефонии, без VLAN

Таблица 13

Последовательность действий для назначения IP-адреса 172.16.0.1 с маской 255.255.255.0 для

управления и IP-адреса 192.168.0.1 с маской 255.255.255.0 для телефонии, без VLAN

Команда	Описание
<pre>mks-ip\$> context ip router</pre>	Переход в контекст «ip router»
mks-ip(cntx-ip)[router]# ifconfig eth0 172.16.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 172.16.0.1 на интерфейс eth0
mks-ip(cntx-ip)[router]# ifconfig eth0:mgr 192.168.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 192.168.0.1 на интерфейс eth0 с псевдонимом «mgr»
<pre>mks-ip(cntx-ip)[router]# exit</pre>	Выход из контекста «ip router»

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping.

3.3.3. Назначение одного IP-адреса и одного VLAN-ID для управления и телефонии

Таблица 14

Последовательность действий для назначения IP-адреса 172.16.0.1 с маской 255.255.255.0 и

VLAN-ID 333 для управления и телефонии

Команда	Описание
<pre>mks-ip\$> context ip router</pre>	Переход в контекст «ip router»
mks-ip(cntx-ip)[router]# vconfig add eth0 333	Назначение VLAN-ID 333 на интерфейс eth0
mks-ip(cntx-ip)[router]# ifconfig eth0.333 172.16.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 172.16.0.1 на интерфейс eth0.333
<pre>mks-ip(cntx-ip)[router]# exit</pre>	Выход из контекста «ip router»

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping.

3.3.4. Назначение одного IP-адреса и разных VLAN-ID для управления и телефонии

Таблица 15

Последовательность действий для назначения VLAN-ID 333 для управления и VLAN-ID 444 для

телефонии и общего IP-адреса 172.16.0.1 с маской 255.255.255.0

Команда	Описание
<pre>mks-ip\$> context ip router</pre>	Переход в контекст «ip router»
mks-ip(cntx-ip)[router]# vconfig add eth0 333	Назначение VLAN-ID 333 на интерфейс eth0
mks-ip(cntx-ip)[router]# vconfig add eth0 444	Назначение VLAN-ID 444 на интерфейс eth0
mks-ip(cntx-ip)[router]# brctl addbr br0	Добавление «моста» с именем br0
mks-ip(cntx-ip)[router]# brctl addif br0 eth0.333	Добавление интерфейса eth0.333 в «мост» br0
mks-ip(cntx-ip)[router]# brctl addif br0 eth0.444	Добавление интерфейса eth0.444 в «мост» br0
mks-ip(cntx-ip)[router]# ifconfig eth0.333 172.16.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 172.16.0.1 на интерфейс eth0.333
<pre>mks-ip(cntx-ip)[router]# exit</pre>	Выход из контекста «ip router»

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping.

3.3.5. Назначение разных IP-адресов (из разных подсетей) и разных VLAN-ID для управления и телефонии

Таблица 16

Последовательность действий для назначения VLAN-ID 333 и IP-адреса 172.16.0.1 с маской 255.255.255.0 для управления и VLAN-ID 444 и IP-адреса 192.168.0.1 с маской 255.255.255.0 для

телефонии	
Команда	Описание
mks-ip\$> context ip router	Переход в контекст «ip router»
mks-ip(cntx-ip)[router]# vconfig add eth0 333	Назначение VLAN-ID 333 на интерфейс eth0
mks-ip(cntx-ip)[router]# vconfig add eth0 444	Назначение VLAN-ID 444 на интерфейс eth0
mks-ip(cntx-ip)[router]# ifconfig eth0.333 172.16.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 172.16.0.1 на интерфейс eth0.333
mks-ip(cntx-ip)[router]# ifconfig eth0.444 192.168.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 192.168.0.1 на интерфейс eth0.444
<pre>mks-ip(cntx-ip)[router]# exit</pre>	Выход из контекста «ip router»

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping.

3.3.6. Назначение отдельного VLAN-ID и IP-адреса для

голосового трафика (RTP)

Таблица 17

Последовательность действий для назначения VLAN-ID 333 и IP-адреса для голосового

трафика (RTP)

Команда	Описание
mks-ip\$> context ip router	Переход в контекст «ip router»
mks-ip(cntx-ip)[router]# vconfig add eth0 333	Назначение VLAN-ID 333 на интерфейс eth0
mks-ip(cntx-ip)[router]# ifconfig eth0.333 172.16.0.1 netmask 255.255.255.0 up	Назначение IP-адреса 172.16.0.1 на интерфейс eth0.333
mks-ip\$> context mg	Переход в контекст «mg»
mks-ip(cntx-media)[gateway]# dsp behaviour private	Установление скрытого режима поведения DSP

Команда	Описание
mks-ip(cntx-media)[gateway]#	Назначение внутренней (локальной) сети для
local net <u><ipaddr> netmask</ipaddr></u>	устройств DSP и указание внешнего интерфейса для
<mask> interface eth0.333</mask>	голосового траффика

3.3.7. Последовательность действий при конфигурировании при подключении по протоколу Н.248

3.3.7.1. Отключение служб контроллера шлюза, маршрутизации и тарификации

Таблица 18

Команда	Описание
mks-ip\$> context mgc	Переход в контекст «mgc»
mks-ip(mgc)# shutdown	выключение всех служб, связанных с контекстом
mks-ip\$> context mgc radius	Переход в контекст настройки службы тарификации «mgc radius»
mks-ip(mgc)# shutdown	выключение всех служб, связанных с контекстом

Последовательность действий

3.3.7.2. Настройка сетевых параметров шлюза доступа

Необходимо связать шлюз доступа с интерфейсом, на который назначен IP-адрес, используемый для телефонии, а также прописать IP-адрес контроллера шлюза и используемые сетевые порты (по умолчанию используется порт 2944 на обеих сторонах)

Таблица 19

Последовательность действий при связывании шлюза с интерфейсом br0, заданием IP-адреса

172.16.0.2 в качестве адреса контроллера шлюза и портов по умолчанию

Команда	Описание
mks-ip\$> context mg	Переход в контекст «mg»
mks-ip(cntx-media)[gateway]# bind br0	Привязка шлюза к интерфейсу br0
mks-ip(cntx-media)[gateway]# transport udp default	Назначение на стороне шлюза порта по умолчанию (2944)
mks-ip(cntx-media)[gateway]# mgc 172.16.0.2	Указание IP-адреса контроллера шлюза 172.16.0.2 и порта по умолчанию (2944)

3.3.7.3. Указание используемых на сети речевых кодеков

Список кодеков прописывается в профилях, которые указываются далее при конфигурировании фиксированных окончаний. Т.о. можно разным портам указать разный список допустимых речевых кодеков. Допустимые речевые кодеки можно прописать в существующем профиле, либо создать новый профиль и прописать кодеки там.

Таблица 20

Последовательность действий при указании допустимых речевых кодеков «g711a» и «g729» в профиле «dflt» и указании данного профиля в группе фиксированных окончаний «fixed_group»

Команда	Описание
mks-ip(cntx-media)[gateway]# profile dflt	Переход в режим настройки профиля «dflt»
mks-ip(cntx-media)[profile dflt]# encoder g711a	Указание «g711a» в качестве допустимого речевого кодека исходящего трафика
mks-ip(cntx-media)[profile dflt]# decoder g711a	Указание «g711a» в качестве допустимого речевого кодека входящего трафика
mks-ip(cntx-media)[profile dflt]# encoder g729	Указание «g729» в качестве допустимого речевого кодека исходящего трафика
mks-ip(cntx-media)[profile dflt]# decoder g729	Указание «g729» в качестве допустимого речевого кодека входящего трафика
mks-ip(cntx-media)[gateway]# terminations fixed_group	Переход в режим настройки группы фиксированных окончаний fixed_group
mks-ip(cntx-media) [terminations fixed_group]# profile dflt	Задание профиля «dflt» в группе «fixed_group»

3.3.7.4. Указание подключенных абонентских плат и

комплектов

На шлюзе можно настроить несколько групп фиксированных окончаний, каждой из которых указывается используемый профиль, настраивается идентификация (именование) окончаний и назначаются абонентские комплекты. Т.о. для указания подключенных абонентских плат и комплектов необходимо прописать их в существующей группе фиксированных окончаний или создать новую группу окончаний и прописать их в ней. Каждой группе необходимо указать тип абонентских окончаний (простой или спаренный абонент).

Таблица 21

Последовательность действий для указания 64-х абонентских комплектов начиная с 0-ого комплекта на 2-ой абонентской плате в группе фиксированных окончаний «fixed_group»

Команда	Описание
mks-ip(cntx-media)[gateway]# terminations fixed_group	Переход в режим настройки группы фиксированных окончаний fixed_group
mks-ip(cntx-media)[terminations fixed_group]# type ak32	Указание типа абонентского окончания – простой абонент
<pre>mks-ip(cntx-media)[terminations fixed_group]# preload {on off}</pre>	Инициализация абонентских портов до/после регистрации на контроллере.
mks-ip(cntx-media)[terminations fixed_group]# port 2 0 count 64	Добавление в группу 64-х абонентских комплектов начиная с 0-ого комплекта на 2-ой абонентской плате

3.3.7.5. Настройка идентификации (именования)

фиксированных окончаний

Каждый абонентский комплект соответствует в рамках терминологии протокола H.248 одному фиксированному окончанию, которое имеет уникальный текстовый идентификатор (имя). Настройка шаблона назначения имен фиксированным окончаниям производится командой «naming». Подробное описание команды можно увидеть, набрав команду «naming» с параметром «help».

Таблица 22

Последовательность действий для задания в группе окончаний fixed_group имен фиксированных окончаний 0/0/0@als.ru, 0/0/1@als.ru, ... 0/0/63@als.ru, не зависящих от

Команда	Описание
mks-ip(cntx-media)[gateway]# terminations fixed_group	Переход в режим настройки группы фиксированных окончаний fixed_group
mks-ip(cntx-media)[terminations fixed_group]# naming template 0/0/\$p@als.ru	Задание шаблона имени фиксированных окончаний 0/0/\$p@als.ru
<pre>mks-ip(cntx-media)[terminations fixed_group]# naming method consiquent_indexing</pre>	Задание метода именования фиксированных окончаний «последовательное индексирование»
<pre>mks-ip(cntx-media)[terminations fixed_group]# naming index shift 0</pre>	Задание начального значения 0 присутствующего в имени фиксированных окончаний индекса
<pre>mks-ip(cntx-media)[terminations fixed_group]# naming index width 0</pre>	Задание нулевого минимального размера поля индекса в имени фиксированных окончаний

указанных номеров абонентских плат и комплектов

3.3.7.5.1. Запуск шлюза

Для запуска шлюза необходимо, находясь в контексте «mg» выполнить команду: no shutdown

3.3.8. Последовательность действий при конфигурировании при подключении по протоколу SIP

При подключении по протоколу SIP MSAN-ALS выступает как самостоятельная оконечная станция типа NGN.

3.3.8.1. Настройка сетевых параметров шлюза доступа и

контроллера шлюза

Необходимо выполнить следующее:

- прописать у контроллера шлюза IP-адрес, используемый для телефонии;
- прописать у контроллера шлюза IP-адрес шлюза, используемый для телефонии;
- прописать у контроллера шлюза порт 2944;
- прописать у контроллера шлюза порт шлюза 2945;
- связать медиа шлюз с интерфейсом, на который назначен IP-адрес, используемый для телефонии;
- прописать у шлюза в качестве IP-адреса контроллера шлюза адрес, используемый для телефонии;
- прописать у шлюза номер сетевого порта 2945;
- прописать у шлюза номер порта контроллера шлюза 2944.

Таблица 23

Последовательность действий при задании сетевых настроек шлюза и контроллера шлюза.

IP-адрес, предназначенный для телефонии, 172.16.0.1, назначен на интерфейс br0

Команда	Описание
mks-ip\$> context mgc	Переход в контекст контроллера шлюза «mgc»
mks-ip(mgc)# ipaddr 172.16.0.1 port 2944	Назначение IP-адреса 172.16.0.1 и порта 2944 на контроллере шлюза
mks-ip(mgc)# gateway "als_mg"	Переход в режим настройки свойств шлюза, необходимых контроллеру шлюза
mks-ip(mgc-gw 'mks_mg')# ipaddr 172.16.0.1 port 2945	Указание контроллеру шлюза IP-адреса шлюза 172.16.0.1 и порта шлюза 2945
mks-ip(mgc-gw 'mks_mg')# context mg	Переход в контекст медиа шлюза «mg»
Команда	Описание
--	---
mks-ip(cntx-media) [gateway]# bind br0	Привязка шлюза к интерфейсу br0
mks-ip(cntx-media) [gateway]# transport udp 2945	Назначение на шлюзе порта 2945
mks-ip(cntx-media) [gateway]# mgc 172.16.0.1 port 2944	Указание шлюзу IP-адреса контроллера шлюза 172.16.0.1 и порта контроллера 2944

3.3.8.2. Указание используемых на сети речевых кодеков

Указание доступных речевых кодеков на шлюзе описано в пункте 3.3.7.3. Необходимо также прописать перечень кодеков на контроллере шлюза.

Таблица 24

Последовательность действий при указании допустимых речевых кодеков «g711a» и «g729» на

контроллере шлюза

Команда	Описание
mks-ip\$> context mgc	Переход в контекст контроллера шлюза «mgc»
mks-ip(mgc)# codec alaw	Указание «alaw» («g711a») в качестве первого допустимого речевого кодека
mks-ip(mgc)# codec g729	Указание «g729» в качестве второго допустимого речевого кодека

3.3.8.3. Указание шаблонов возможных набираемых

телефонных номеров

В настройках контроллера шлюза есть возможность создания нескольких профилей, содержащих различные шаблоны возможных набираемых телефонных номеров. Каждому абоненту на контроллере может назначаться один из сконфигурированных профилей. Таким образом есть возможность запретить или разрешить определенный вид услуг, назначив абоненту соответствующий профиль. Шаблон номеров устанавливается командой:

use digitmap <digitmap>

- где <digitmap> - шаблон номеров. Синтаксис шаблона описан в рекомендации ITU-T H.248.1.

Таблица 25

Последовательность действий при создании профиля «ld_access» с шаблоном нумерации, содержащей пятизначные номера, начинающиеся на 5-ку и на 3-ку, а также содержащей номера междугороднего набора, и назначение данного профиля 0-ому абоненту, находящемуся

на	шлюзе	«als_	_mg»
----	-------	-------	------

Команда	Описание	
mks-ip\$> context mgc	Переход в контекст контроллера шлюза «mgc»	
mks-ip(mgc)# profile "ld_access"	Переход в режим конфигурирования профиля «ld_access» (имя профиля можно вводить и без кавычек)	
<pre>mks-ip(mgc-profile 'ld_access')# use digitmap "(5XXXX 3XXXX 8X.)"</pre>	Задание шаблона нумерации "(5XXXX 3XXXX 8X.)" (ввод команды можно осуществлять без кавычек и скобок)	
mks-ip(mgc-profile 'ld_access')# gateway "als_mg"	Переход в режим конфигурирования шлюза «als_mg» на контроллере шлюза	
mks-ip(mgc-gw 'als_mg')# profile al 0 profname ld_access	Назначение профиля «ld_access» 0-ому абоненту	

Таблица 26

Последовательность действий при создании профиля «ld_access» с шаблоном нумерации, содержащей пятизначные номера, начинающиеся на 5-ку и на 3-ку, но не содержащей номера междугороднего набора, и назначение данного профиля 0-ому абоненту, находящемуся на

шлюзе	«al	S_	<u>mg</u> »
-------	-----	----	-------------

Команда	Описание
mks-ip\$> context mgc	Переход в контекст контроллера шлюза «mgc»
mks-ip(mgc)# profile "ld_denied"	Переход в режим конфигурирования профиля «ld_denied» (имя профиля можно вводить и без кавычек)
mks-ip(mgc-profile 'ld_access')# use digitmap "(5XXXX 3XXXX)"	Задание шаблона нумерации "(5XXXX 3XXXX)" (ввод команды можно осуществлять без кавычек и скобок)
mks-ip(mgc-profile 'ld_access')# gateway "als_mg"	Переход в режим конфигурирования шлюза «als_mg» на контроллере шлюза
mks-ip(mgc-gw 'als_mg')# profile al 1 profname ld_denied	Назначение профиля «ld_denied» 1-ому абоненту

3.3.8.4. Настройка идентификации (именования)

фиксированных окончаний

Необходимо настроить одинаковый шаблон именования на контроллере шлюза и на

шлюзе.

Таблица 27

Последовательность действий задания шаблона имен фиксированных окончаний на

контроллере шлюза и на шлюзе

Команда	Описание	
mks-ip\$> context mgc	Переход в контекст контроллера шлюза «mgc»	
mks-ip(mgc)# gateway "als_mg"	Переход в режим конфигурирования шлюза «als_mg» на контроллере шлюза	
mks-ip(mgc-gw 'als_mg')# template "ln/"	Задание шаблона имени фиксированного окончания «ln/». Команда предписывает давать окончаниям имена ln/0, ln/1, ln/2	
mks-ip(mgc-gw 'als_mg')# context mg	Переход в контекст медиа шлюза «mg»	
mks-ip(cntx-media) [gateway]# terminations fixed_group	Переход в режим настройки группы фиксированных окончаний fixed_group	
mks-ip(cntx-media) [terminations fixed_group]# naming template ln/	Задание шаблона имени фиксированных окончаний ln/	
mks-ip(cntx-media) [terminations fixed_group]# naming method consiquent_indexing	Задание метода именования фиксированных окончаний «последовательное индексирование»	
mks-ip(cntx-media) [terminations fixed_group]# naming index shift 0	Задание начального значения 0 присутствующего в имени фиксированных окончаний индекса	
mks-ip(cntx-media) [terminations fixed_group]# naming index width 0	Задание минимального размера поля индекса в имени фиксированных окончаний	

3.3.8.5. Настройка абонентских портов

Настройка абонентских портов на стороне шлюза описана в пункте 3.3.7.4.На контроллере шлюза также необходимо назначить каждому порту телефонный номер и профиль.

Таблица 28

Последовательность действий при назначении номеров 53000 — 53063 и профиля «ld_access»

Команда	Описание
mks-ip\$> context mgc	Переход в контекст контроллера шлюза «mgc»
mks-ip(mgc)# gateway "als_mg"	Переход в режим конфигурирования шлюза «als_mg» на контроллере шлюза

Команда	Описание
mks-ip(mgc-gw 'als_mg')# numbering al 0 number 53000 count 64	Назначение номеров 53000 — 53063
mks-ip(mgc-gw 'als_mg')# profile al 0 profname ld_access count 64	Назначение 64-ем портам, начиная с 0-ого, профиля ld_access

3.3.8.6. Настройка маршрутизации

Необходимо настроить маршрутизацию в соответствии со всеми возможными телефонными номерами, используемыми на сети. Она должна включать маршрутизацию внутренней нумерации и маршрутизацию остальной нумерации, направляющую вызовы на узловую станцию по протоколу SIP. Конфигурация маршрутизатора представляет из себя список маршрутов, каждый из которых содержит:

- шаблон набранного номера;
- идентификатор службы, куда должен перенаправлаться вызов (megaco на контроллер шлюза, sip на SIP);
- регулярное выражение, формирующее «вызываемый адрес» (в простейшем варианте набранный телефонный номер). Набранный телефонный номер в выражении определяется последовательностью двух символов «\0»;
- приоритет маршрута, определяющий порядок маршрутов в списке, и, соответственно, порядок анализа соответствия набранного номера и шаблона номера в маршруте. Т.о. чем меньше число приоритета, тем выше приоритет данного маршрута.

Для добавления маршрута необходимо перейти в контекст маршрутизатора и выполнить команду:

route <number_template> to <service> <reg_expr> <prio>

где <number_template> - шаблон набранного номера, <service> - идентификатор службы, <reg_expr> - регулярное выражение, <prio> - приоритет маршрута.

При этом маршрут добавляется в контекст default.

Таблица 29

Последовательность действий при задании маршрутизации наборов пятизначных номеров, начинающихся на 53, на контроллер шлюза без преобразования номера с высшим (первым)

приоритетом маршрута

Команда	Описание
mks-ip\$> context cs	Переход в контекст маршрутизатора «cs»

Команда	Описание	
mks-ip(cs-route)# route 53 to megaco \0 1	Добавление маршрута	

Таблица 30

Последовательность действий при задании маршрутизации наборов пятизначных номеров, начинающихся на 54, на SIP с добавлением к номеру адреса SIP-узла 172.16.0.2, с приоритетом

маршрута 2

Команда	Описание
mks-ip\$> context cs	Переход в контекст маршрутизатора «cs»
mks-ip(cs-route)# route 54 to sip ∖ 0@172.16.0.2 2	Добавление маршрута

3.3.8.7. Запуск контроллера шлюза и шлюза доступа

Для запуска контроллера шлюза и шлюза необходимо, находясь в контексте «mgc» и «mg» соответственно, выполнить команду:

no shutdown

3.3.8.8. Настройка службы тарификации «mgc radius»

Служба осуществляет сбор информации по состоявшимся и несостоявшимся соединениям и отсылку ее на тарификационный сервер по протоколу «radius». Для ее настройки необходимо:

- перейти в контекст настройки службы;
- указать, с какого IP-адреса и порта будут отсылаться данные на сервер. В качестве такого IP-адреса обычно указывается адрес, предназначенный для управления устройством, либо специально выделенный для тарификации адрес (по умолчанию используется порт 1812);
- IP-адрес сервера тарификации и «секретный» ключ;
- идентификатор.

Для запуска службы необходимо, находясь в контексте ее настройки, выполнить следующую команду:

no shutdown

Таблица 31

Последовательность действий при настройке и запуске службы тарификации. IP-адрес управления устройством 172.16.0.1, IP-адрес сервера тарификации — 172.16.0.2, «секретный»

ключ - «qwerty»

Команда	Описание
mks-ip\$> context mgc radius	Переход в контекст настройки службы тарификации «mgc radius»
mks-ip(mgc-radius)# ipaddr 172.16.0.1 port 20323	Назначение IP-адреса 172.16.0.1 и порта 20323
mks-ip(mgc-radius)# server 172.16.0.2 secret qwerty	Указание IP-адреса сервера тарификации 172.16.0.2 и «секретного» ключа «qwerty»
mks-ip(mgc-radius)# identifier ALS_MGC	Указание идентификатора «ALS_MGC»
mks-ip(mgc-radius)# no shutdown	Запуск службы

3.3.9. Настройка ДВО

Параметры ДВО привязываются к номеру. По умолчанию все ДВО являются отключенными. Для того, что бы разрешить абонентам использовать ДВО, необходимо выполнить соответствующую команду:

context mgc servic	e dvo							
Если в	параметрах	команды	указан	параметр	"off",	то	соответствующее	ДВО

становится доступно абоненту, но не активно. При необходимости абонент сможет сам активировать ДВО со своего телефонного аппарата.

Таблица 32

Последовательность действий для разрешения абоненту 25123 использовать услуги hold и cfnr

Команда	Описание
hostname> context mgc	Переход в режим context mgc
hostname(mgc)# service dvo	Переход в режим управления сервисом ДВО
hostname(mgc-dvo)# number 25123	Перейти в режим конфигурации ДВО для номера 251223
hostname(mgc-dvo)(25123)# hold	Разрешить ДВО "удержание звонка"
hostname(mgc-dvo)(25123)# cfnr off	Отключение ДВО "переадресация по неответу"

Таблица 33

Последовательность действий для назначения абоненту 25123 безусловной переадресации на номер 75987

Команда	Описание
hostname> context mgc	Переход в режим context mgc
hostname(mgc)# service dvo	Переход в режим управления сервисом ДВО
hostname(mgc-dvo)# number 25123	Перейти в режим конфигурации ДВО для номера 25123
hostname(mgc-dvo)(25123)# cfu on 75987	Назначение абоненту 25123 безусловной переадресации на номер 75987

Для корректного использования ДВО соответствующим образом должен быть прописан план нумерации, например:

(230XX|ExxEx.F|FxxEx.F|FxxF|EFxxF|EEx|ExxExExxxxxxF|ExxF|790XXXX|8X.)

здесь:

- 230ХХ набор "внутри села";
- ExxEx.F для установки услуг типа cfu, cfnr и cfb, "xx" код услуги, "x." телефон;
- FxxF для снятия услуг типа cfu, cfnr и cfb, "xx" код услуги;
- EFxxF для проверки активности услуги ДВО, "xx" код услуги;
- ЕЕх сокращенный набор;
- ExxExExxxxxxF задание номера для сокращенного набора;
- ExxF для установки услуг типа dnd, "xx" код услуги;
- 790XXXX набор "в город";
- 8Х. набор "на межгород".

ДВО при настройке через CLI применяется не сразу, а в течение минуты.

Абоненты станции имеют возможность управлять услугами ДВО через свой телефонный аппарат (ТА). Соответствующие коды ДВО представлены в таблице:

Таблица 34

Услуги ДВО

Команда	Описание
21	Безусловная переадресация, CFU
22	Переадресация по занятости, CFB
61	Переадресация по неответу, CFNR
26	Услуга «Не Беспокоить», DND
51	Сокращенный набор, AD

Например, для того, чтобы установить безусловную переадресацию на номер «54321»,

абоненту необходимо со своего ТА, после поднятия трубки и убедившись, что в трубке присутствует ответ станции, набрать:

*21*54321#

Для снятия безусловной переадресации, необходимо набрать:

#21#

Если после набора получаем сигнал отбоя, то услуга не принимается, а если ответ станции, то услуга принята.

В режиме удержания возможны следующие действия (если они разрешены конфигурацией для данного абонента):

Таблица 35

Команда	Описание
1	Выход на новую линию, для набора номера
2	Отбой текущего абонента с переходом на удерживаемого
3	Переключение между удерживаемыми абонентами
4	Конференц связь
5	Перевод звонка

Действия при удержании

Например, для организации конференции нужно проделать следующие шаги:

- Набрать номер абонента А, дождаться ответа (поднять трубку, набрать номер А, ожидать ответа).
- Поставить абонента А на удержание (нажать «FLASH»).
- Выйти на новую линию (нажать «1»).
- Набрать номер абонента Б и дождаться ответа (набрать номер Б, ожидать ответа).
- Поставить абонента Б на удержание (нажать «FLASH»).
- Организовать конференцию (нажать «4»).

3.3.10. Настройка плат ГВС

Для настройки плат ГВС необходимо выполнить следующие действия:

Таблица 36

Команда	Описание
als\$> service gvs	Переход в сервис ГВС
als(srv-gvs)# slot 0 no shutdown	Указание FWASlotManager, что мы включаем плату в определенном слоте (0) и указываем ей тип ГВС-ИПАЛ

Последовательность действий для настройки плат ГВС

После чего плата начинает мониторится системой.

Далее можно приступить непосредственно к настройке самой платы, у которой могут меняться 3 параметра:

- Амплитуда смещения сигнала ГВС.
- Задержка сигнала ГВС относительно сигнала синхронизации.
- Напряжение смещения сигнала ГВС.

Все эти параметры настраиваются через профили ГВС. В системе существует всего 5 профилей ГВС. Для настройки профиля необходимо сделать следующее:

Таблица 37

Команда	Описание
als(srv-gvs)# profile 0 amplitude 12	Задание профилю 0 амплитуды смещения сигнала ГВС равной 12
als(srv-gvs)# profile 0 delay 14	Задание профилю 0 задержки сигнала ГВС относительно сигнала синхронизации равной 14
als(srv-gvs)# profile 0 voltage 16	Задание профилю 0 напряжения смещения сигнала ГВС равного 16
als(srv-gvs)# slot 0 profile 0	После настройки профилей необходимо просто указать порту ГВС настройки какого профиля использовать

Последовательность действий для настройки параметров плат ГВС

3.3.11. Service SNMP

Simple Network Management Protocol (SNMP) – это протокол прикладного уровня, который позволяет осуществлять обмен управляющей информацией между сетевыми устройствами. SNMP дает возможность управлять эксплуатационными характеристиками сети, находить и устранять неисправности в работе сети, осуществлять мониторинг текущих параметров сетевых устройств.

Сеть, управляемая SNMP, состоит из трех ключевых компонентов: управляемые устройства, агенты и системы управления сетью.

Управляемое устройство – сетевой узел, на котором установлен агент SNMP. Управляемые устройства собирают и сохраняют информацию о своем текущем состоянии и обеспечивают доступность этой информации для системы управления сетью. Для получения доступа к информации необходимо указание параметра community name. В данном случае, в роли управляемых устройств выступают блоки MKC-IP.

Агент – модуль программного обеспечения управления сетью, который находится на управляемом устройстве. Агент имеет доступ к информации об устройстве и транслирует эту информацию в форму, совместимую с SNMP. Так, параметры устройства с точки зрения SNMP представляются в виде «объектов», которые хранится в иерархической форме в Базе Информации Управления (Management Information Base, MIB). Каждый объект в иерархии MIB обладает уникальным идентификатором (Object Identifier, OID), с помощью которого можно получить доступ к данному объекту.

Система управления сетью – набор приложений, которые обеспечивают мониторинг и управление сетевыми устройствами.

3.3.11.1. Настройка протокола SNMP

Для перехода в режим настройки протокола SNMP необходимо выбрать соответствующий сервис, в данном случае snmp.

als\$> service snmp als(service)[snmp]# После перехода в сервис системная подсказка отобразит информацию, соответствующую этому сервису. При нажатии <Tab> отобразится список доступных в этом сервисе команд.

als(service)[snmp]#

Настр	ойка параметров запуска SNMP
system	Установка места расположения системы и контактной информации
community	Установить сообщество (community) только для чтения и для чтения/записи
host	Установка хоста, с которого разрешен доступ к SNMP-агенту
user	Добавление/удаление пользователей SNMPv3
trap2sink	Добавление/удаление адресатов SNMP-трапов (trap)
informsink	Добавление/удаление адресатов SNMP-уведомлений (inform)
monitordelay	Установка частоты опроса MIB-объектов, при изменении которых отправляются
	трапы из интервала [1, 300] в секундах
show	Просмотр конфигурации SNMP
shutdown	Остановить агент SNMP
als(service)[snmp]#

Для конфигурирования сервиса SNMP необходимо выполнить следующие задачи:

Таблица 38

Команда	Описание
als(service)[snmp]# system contact Ivan_Ivanovich_Ivanov als(service)[snmp]# system location Telefonnya_Stanciya	Установка места расположения системы и контактной информации
als(service)[snmp]# community read ro alsservice)[snmp]# community write rw	Установка community name только для чтения и для чтения/записи

Последовательность действий для конфигурирования сервиса SNMP

Команда	Описание
als(service)[snmp]# host all COmmunity read als(service)[snmp]# host 172.16.0.67 community write	Установка хоста, с которого разрешен доступ к SNMP-агенту. Существует возможность предоставить доступ всем хостам при помощи ключевого слова all
als(service)[snmp]# trap2sink add 172.16.3.3	Добавление/удаление адресатов SNMP-трапов (trap)
als(service)[snmp]# informsink add 172.16.0.66	Добавление/удаление адресатов SNMP-уведомлений (inform)
als(service)[snmp]# monitordelay 30	Установка частоты опроса MIB-объектов, при изменении которых отправляются трапы

Также для более защищенного доступа к управляемым устройствам имеется возможность использовать версию 3 протокола SNMP, которая позволяет организовать разграничение доступа на уровне пользователей.

При создании пользователя SNMP требуется указание паролей для аутентификации и для шифрования соединения. Эти задачи реализованы с помощью алгоритмов MD5 и DES соответственно. Следует заметить, что пароли при вводе не отображаются на экран.

Для того чтобы изменения конфигурации, связанные с добавлением/удалением пользователей, вступили в силу, необходимо перезапустить сервис SNMP.

Добавление пользователя SNMPv3 с правами только для чтения:

als(service)[snmp]# user add techuser ro Введите пароль для аутентификации нового пользователя (не менее 8 символов):

Введите пароль для шифрования соединения: (нажмите Enter для повторного использования аутентифицирующего пароля)

3.3.12. Сервис резервирования

На блоке МКС-IP сервис резервирования находится в постоянной работе. После старта блока, но перед применением его конфигурации осуществляется проверка типа запуска блока, т.е. есть уже работающий блок или нет. Соответственно, если есть, МКС-IP находящийся в работе, то запускающийся блок синхронизирует конфигурацию и перейдет в состояние резерва, из которого будет опрашивать состояние рабочего блока и передавать ему данные о своем состоянии (состояние портов и т.п.). Переход на резервный блок может произойти только по одной причине, это перезапуск основного блока (не зависимо от чего он произошел), после чего резервный блок произведет применение конфигурации и перейдет в состояние работы.

Причин перезапуска основного блока может быть несколько, системный сбой,

технологический перезапуск, команда оператора и т.д. Кроме того, часть сервисов могут инициализировать перезапуск в случае не правильной работы среды (например сервис MG, может инициировать перезапуск, в случае отсутствии связи с SSW и отключения порта uplink или пропуск тайм аута восстановления соединения).

Для правильной работы сервиса резервирования необходимо корректно настроить ресурсы, связанные с внешней средой, такие как порты ethernet и т. д. Так как в случае физического сбоя на портах основного блока и их корректной работе на резервном, система по сбою в сервисах, связанных с недоступностью удаленной стороны, сразу инициирует переход на рабочий блок, находящийся в тот момент в резерве.

Примеры настройки компонентов:

Рассмотрим пример, что нужно настроить на блоке для работы сервиса MG в условиях резервирования:

Для начала сконфигурируем Ethernet порты. Как правило в штатной конфигурации второй порт является uplink, поэтому пометим его как no shutdown:

```
port ethernet 2 no shutdown
```

После чего необходимо выставить параметры службы mg, как то количество перезапросов пакета и количество попыток реконекта к SSW.

```
transaction retransmission 3
reregistration attempts 0
```

Т.е. шлюз делает 3 попытки послать не подтвержденное сообщение после чего запускает процедуру рестарта, которая в свою очередь оценивает состояние портов, и принимает решение о переходе на резерв.

3.3.13. Завершающие действия после настройки

После настройки необходимо проверить правильность текущей конфигурации, сохранить ее и перезагрузить плату.

Чтобы посмотреть текущую конфигурацию, необходимо выполнить команду:

```
show running-config
     Чтобы сохранить текущую конфигурацию, необходимо выполнить команду:
copy running-config startup-config
     Чтобы перезагрузить плату, необходимо выполнить команду:
```

reboot

3.4. Плата ADSL-32

3.4.1. Подключение по СОМ-порту

Для подклюяения по СОМ-порту см. п. 3.1.1 Подключение по СОМ-порту.

Имя пользователя по умолчанию - superuser, пароль - 123456. При желании пароль можно изменить после входа в систему.

Диалог входа в
систему
ADSL32 ready !!! als login: superuser Password: als\$>
Рисунок 15

После входа в систему отобразится приглашение командной строки CLI.

3.4.2. Подключение по протоколу Telnet

Для подключения по протоколу Telnet см. п. 3.1.2 Подключение по протоколу Telnet.

Если заводская конфигурация не была изменена, ADSL-32 имеет адрес **172.16.1.10** с маской подсети **255.255.0.0**. В противном случае IP-адрес нужно определить, используя подключение к блоку при помощи COM-порта.

3.4.3. Подключение по протоколу НТТР (Web-конфигуратор)

Для подключения по протоколу HTTP (Web-конфигуратор) см. п. 3.1.4 Подключение по протоколу HTTP.

Вход в Web-конфигуратор имеет следующий вид:

Вход в	систему
Название системы:	als
Местоположение:	TelephoneStation
ІР-адрес:	172.16.1.21
МАС-адрес:	00:13:AA:00:11:AA
Имя пользователя	
Пароль	
Вход	

Имя пользователя и пароль (значения по умолчанию):

- Имя пользователя: superuser
- Пароль: 123456

Если аутентификация прошла успешно, произойдет переход к странице «ADSLмонитор».

3.4.4. Перед началом конфигурирования

Перед тем как перейти к настройке MSAN-ALS, необходимо определиться со следующими параметрами:

- 1. Требуется ли использование VLAN?
- **2.** В случае, если будет использоваться VLAN необходимо знать, какой VLAN ID будет использоваться для управления платы, а какой (какие) для абонентского доступа.
- **3.** Какой IP адрес, маска подсети и, если требуется, шлюз по-умолчанию будет использоваться для управления платой.
- **4.** Какой (какие) VPI/VCI будут использоваться для каждого VLAN ID абонентского доступа.

3.4.5. Заводская конфигурация

MSAN-ALS поставляется с некоторой начальной конфигурацией, называемой заводской (factory-config). Кроме того, на устройстве существуют дополнительные три предопределенных конфигурации:

• os_adsl_v2-factory1.conf — без использования VLAN;

- os_adsl_v2-factory2.conf с использованием VLAN для абонентского трафика и отдельного VLAN для управления;
- os_adsl_v2-factory3.conf с использованием разных VLAN для интернет, IPTV, VoIP и управления.

Если после изменения текущей конфигурации (running-config) и замены ей стартовой конфигурации, оказалось, что устройство работает не так, как ожидалось, всегда существует возможность вернуться к заводской конфигурации. Для этого следует выполнить команду

```
copy factory-config startup-config
```

и перезагрузить устройство командой

reboot

Для возвращения к первоначальным настройкам вместо заводской можно использовать одну из перечисленных конфигураций. Они, так же как и любые пользовательские конфигурации, находятся в области памяти nvram.

3.4.6. Назначение IP-адреса

3.4.6.1. Конфигурация без использования VLAN

Как уже упоминалось, в заводской конфигурации MSAN-ALS присвоен адрес 172.16.1.10 с маской подсети 255.255.0.0. Для его изменения нужно использовать подключение к блоку при помощи СОМ-порта.

После успешного входа в систему необходимо выполнить следующие действия:

Таблица 39

Команда	Описание
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор)
als(cntx-ip)[router]#	Назначение адреса 172.16.1.21 с маской подсети 255.255.0.0
ifconfig hbr0 172.16.1.21	для интерфейса hbr0 с последующим включением этого
netmask 255.255.0.0 up	интерфейса
als(cntx-ip)[router]#	Сохранение текущей конфигурации в стартовую, чтобы при
copy running-config	следующем запуске устройство использовало новый
startup-config	установленный IP-адрес

Последовательность действий для изменения ІР-адреса устройства

При создании интерфейса dslam_bridge bro автоматически создается «хост-интерфейс» (hbro), обеспечивающий возможность подключения к устройству и его управления. Задача хост-интерфейса - выбирать из всех приходящих на мост пакетов только те пакеты, которые

предназначены именно данному хосту (процессору), а не для пересылки мостом с одного порта на другой. Такое разделение непосредственно моста и его управляющего интерфейса позволяет, отключив хост-интерфейс (т.е. отключив управление), оставить поток пакетов на его нижнем уровне.

Такие интерфейсы автоматически порождаются всеми Ethernet-совместимыми интерфейсами. Их имена отличаются от имен порождающих интерфейсов буквой «h» в начале (от слова «host»). Таким образом, хост-интерфейс для порта uplink0 будет иметь название huplink0, а для интерфейса еоа0 — heoa0.

Кроме этого, Uplink-порты и интерфейсы EoA имеют одинаковые команды управления взаимодействия с мостом со следующим синтаксисом:

[no] listen [bridge]

Если у порта или интерфейса в настройках установлено «no listen» то он не будет перенаправлять мосту, к которому он подключен, выбранные для устройства пакеты. Наоборот, если установлено «listen bridge» то интерфейс или порт будет отправлять пакеты на мост и получать их с него.

Таким образом, для того чтобы отключить управление со стороны какого-либо порта, необходимо в его конфигурации указать «no listen» и не назначать IP-адрес на его хостинтерфейс.

3.4.6.2. Конфигурация с использованием VLAN

В том случае, если для управлением MSAN-ALS планируется использовать отдельный VLAN, необходимо настроить управляющий интерфейс так, чтобы он имел возможность принимать пакеты, содержащие метку (тег) данного VLAN.

Для того чтобы настроить управление с помощью интерфейса hbro по управляющему VLAN с меткой 1000, нужно выполнить следующие команды :

Таблица 40

Команда	Описание
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор)
als(cntx-ip)[router]# ifconfig hbr0 mtu 1504 up	Установка нового максимального размера передаваемого пакета (фрейма) для интерфейса hbro. Указанный размер на 4 байта больше обычного, что соответствует пакету, содержащему метку VLAN
als(cntx-ip)[router]# vconfig add hbr0 1000	Создание нового интерфейса hbr0.1000, который и будет представлять интерфейс hbr0 в управляющем

Последовательность действий для настройки управления устройством по VLAN

Команда	Описание
	VLAN с меткой 1000
als(cntx-ip)[router]# ifconfig hbr0.1000 172.16.1.10 netmask 255.255.0.0 up	Назначение адреса 172.16.1.10 с маской подсети 255.255.0.0 для интерфейса hbr0.1000 с последующим включением этого интерфейса
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую

Для удаления интерфейса hbro из VLAN 1000, нужно выполнить приведенную ниже команду:

als(cntx-ip)[router]# vconfig rem hbr0.1000

3.4.7. Назначение шлюза по умолчанию

Локальная сеть, в которой находится станционное оборудование и рабочие станции, с которых производится конфигурирование, может быть построена таким образом, что первое и последние находятся в разных сегментах (подсетях). При этом подсети могут соединяться с помощью маршрутизатора.

В этом случае на MSAN-ALS необходимо настроить «шлюз по умолчанию» (default gateway), т.е. указать маршрутизатор, через который устройство будет отправлять ответы на запросы с рабочих станций. Сделать это можно с помощью следующих команд:

Таблица 41

Команда	Описание
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор)
als(cntx-ip)[router]# route 0.0.0.0 0.0.0.0 gateway 172.16.1.111	Указание хоста, на котором есть интерфейс с IP-адресом 172.16.1.111, в качестве шлюза по умолчанию. Естественно, конфигурируемый MSAN-ALS должен находиться в той же подсети, что и указанный сетевой интерфейс
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую

Последовательность действий для настройки шлюза по умолчанию

3.4.8. Смена режима работы портов Uplink

Порты Uplink, имеющиеся на MSAN-ALS, могут работать в двух режимах: Gigabit и FastEthernet. Тот или иной режим следует выбирать в зависимости от того, на работу с какой скоростью передачи данных рассчитано сетевое оборудование, к которому будет подключаться MSAN-ALS. Так например, если устройство включается в локальную сеть с

помощью гигабитного коммутатора (скорость до 1 Гбит/с), то необходимо, чтобы uplinkпорт на устройстве работал в режиме Gigabit Ethernet. Если же используется, например, коммутатор Fast Ethernet (100 Мбит/с), то и uplink-порт должен работать в том же режиме.

По умолчанию для портов uplink установлен режим Gigabit Ethernet.

Для того чтобы изменить режим работы uplink, нужно выполнить следующие шаги:

Таблица 42

Команда	Описание
als\$> context dslam	Переход в режим конфигурирования контекста DSLAM
als(cntx-dslam)# uplink mode fe	Установка режима FastEthernet для портов uplink
als(cntx-dslam)# copy running-config startup- config	Сохранение текущей конфигурации в стартовую, чтобы при перезагрузке системы сохранился установленный режим uplink
als(cntx-dslam)# reboot	Перезагрузка системы. Внимание! При изменении режима работы портов Uplink перезагрузка системы обязательна

Последовательность действий для выбора режима nopma Uplink

3.4.9. Использование каскадирования портов Uplink

MSAN-ALS поддерживает возможность каскадирования uplink-портов. Благодаря этому становится возможно использовать один uplink-канал для подключения к сети сразу нескольких устройств. При этом к устройствам, находящимся в каскаде, применяется следующая терминология:

Позиция в каскаде	Описание
top	«Верх». Данный блок MSAN-ALS является первым в каскаде, и именно он соединяется с сетью оператора связи. Для подключения к ней используется верхний порт uplink0. Соответственно, для соединения со следующим устройством в каскаде используется <i>нижний</i> порт uplink1
bottom	«Низ». Данный блок является последним в каскаде. Для каскадирования используется <i>верхний</i> порт uplink0
center	«Центр». Данное устройство находится в середине каскада и должно пропускать трафик, предназначенный для следующих за ним устройств транзитом. Поэтому для соединения с каскадом на блоке этого типа используются <i>оба nopma</i> Uplink

Схематическое изображение каскада из MSAN-ALS приведено ниже:

Для того чтобы можно было объединить несколько устройств MSAN-ALS в каскад, необходимо, чтобы их Uplink-порты работали в одинаковом режиме: Gigabit или FastEthernet.

Устройства в каскаде могут соединяться как прямым, так и перекрестным сетевым кабелем. При этом в конфигурации соединяемых устройств должна быть включена функция autonegotiation для портов Uplink (например, для uplink0: port uplink uplink0 autonegatiation).

По умолчанию режим каскадирования портов Uplink выключен и соответствующий параметр конфигурации имеет значение none. Для того чтобы изменить режим работы uplink, нужно выполнить следующие шаги:

Таблица 43

Команда	Описание
als\$> context dslam	Переход в режим конфигурирования контекста DSLAM
als(cntx-dslam)# uplink cascading top	Назначение данного MSAN-ALS первым устройством каскада
als(cntx-dslam)# copy running-config startup- config	Сохранение текущей конфигурации в стартовую, чтобы при перезагрузке системы сохранился установленный режим каскадирования
als(cntx-dslam)# reboot	Перезагрузка системы. Внимание! При изменении режима каскадирования перезагрузка системы обязательна

Последовательность действий для выбора режима каскадирования

3.4.10. Резервирование портов Uplink

Данная возможность позволяет MSAN-ALS в случае отказа одного из портов Uplink

автоматически восстановить соединение с сетью через резервный порт. Для этого при подключении к сети оператора связи должны быть задействованы оба Uplink-порта устройства.

Проверка соединения с Uplink-портом производится с помощью периодической отправки ICMP-пакетов (ping) заданному в конфигурации хосту. Выбранный хост всегда должен быть доступен по сети, поскольку именно по получению или неполучению ответов то него MSAN-ALS может судить о наличии или отсутствии соединения с сетью через активный в данный момент порт Uplink.

Схема работы резервирования портов приведена на рисунке ниже:

По умолчанию режим резервирования портов Uplink выключен. Для того чтобы включить резервирование uplink, нужно выполнить следующие шаги:

Таблица 44

Команда	Описание
als\$> port uplink uplink0	Переход в режим конфигурирования порта uplink0
als(port)[uplink uplink0]# no bind	Отключить статическую привязку к соответствующему интерфейсу Communication
als(port)[uplink uplink0]# bind redundant	Включить динамическую привязку
als\$> port uplink uplink1	Переход в режим конфигурирования порта uplink1
als(port)[uplink uplink1]# no bind	Отключить статическую привязку к соответствующему интерфейсу Communication
als(port)[uplink uplink1]# bind redundant	Включить динамическую привязку
als\$> service uplinkRedundancy	Переход в режим конфигурирования сервиса резервирования Uplink

Последовательность действий для включения режима резервирования

Команда	Описание
als(service) [uplinkRedundancy]# interface communication com0	Переход к конфигурированию группы резервирующих портов, связываемых динамически с данным интерфейсом Communication
als(uplinkRedundancy) [com0]# host 172.16.0.111	Указание IP-адреса контрольного хоста для проверки соединения
als(uplinkRedundancy) [com0]# element uplink0	Добавление порта uplink0 в группу резервирования
als(uplinkRedundancy) [com0]# element uplink1	Добавление порта uplink1 в группу резервирования
als(uplinkRedundancy) [com0]# exit	Выход из редактирования параметров данной группы резервирования
als(service) [uplinkRedundancy]# no shutdown	Включение режима резервирования
als(service) [uplinkRedundancy]# copy running-config startup- config	Сохранение текущей конфигурации в стартовую

3.4.11. Настройка портов ADSL с использованием профилей

Порты ADSL имеют гибкий набор настроек, обеспечивающих работу каждого порта. Часть настроек применяется на самом порту, часть в профилях, которые используют эти порты.

Для того чтобы изменить режим работы порта, значения пределов помехоустойчивости и скорость порта для downstrem и upstream используется набор профилей. ПортADSL использует профиль ADSLTEMPLATE, который в свою очередь использует два профиля (ADSL и ADSLCHANNEL), в которых и содержатся значения режима работы, пределов помехоустойчивости и скорости порта.

Для того чтобы изменить настройки порта (режим работы порта, значения пределов помехоустойчивости и скорость порта для downstrem и upstream) таким образом, что они будут отличаться от настроек всех остальных портов необходимо выполнить следующие шаги:

Таблица 45

Последовательность действий настройки портов ADSL с использование профилей

Команда	Описание
als\$> profile adsl prfadsl1	Создание нового профиля ADSL со значениями по- умолчанию и переход в режим его настройки
als(profile)[adsl prfadsl1]# mode G_DMT_BIS	Установить модуляцию согласно стандарту ITU G.992.3 (G.Dmt.Bis)

als(profile)[adsl prfadsl1]# mode G_DMT_BIS_AnnM	Установить модуляцию согласно стандарту ITU G.992.3 (G.Dmt.Bis) Annex M. C учетом предыдущего шага порт будет иметь возможность подключаться в одном из режимов модуляции
als(profile)[adsl prfadsl1]# snr ds 7	Установить значение предела помехоустойчивости в децибелах в направлении downstream
als(profile)[adsl prfadsl1]# snr us 7	Установить значение предела помехоустойчивости в децибелах в направлении upstream
als(profile)[adsl prfadsl1]# profile adslchannel prfadslch1	Создание нового профиля ADSLCHANNEL со значениями по-умолчанию и переход в режим его настройки
als(profile)[adslchnl prfadslch1]# maxrate ds 8100	Установить скорость порта для downstream в 8100 Кбит/сек
als(profile)[adslchnl prfadslch1]# maxrate us 512	Установить скорость порта для upstream в 512 Кбит/сек
als(profile)[adslchnl prfadslch1]# profile adsltemplate prfadsltm1	Создание нового профиля ADSLTEMPLATE со значениями по-умолчанию и переход в режим его настройки
als(profile)[adsltmpl prfadsltm1]# use adsl prfadsl1	Использовать указанный профиль ADSL
als(profile)[adsltmpl prfadsltm1]# use adslchannel prfadslch1	Использовать указанный профиль ADSLCHANNEL
als(profile)[adsltmpl prfadsltm1]# port adsl adsl0	Переход в режим настройки порта adsl0
als(port)[adsl_adsl0]# use adsltemplate prfadsltm1	Использовать указанный профиль ADSLTEMPLATE для порта adsl0. Внимание! Обновление вступает в силу сразу после изменения одного из параметров. Соединение на порту adsl0 автоматически переустановится с учетом значений, указанных в стеке профилей
als(port)[adsl_adsl0]# copy running-config startup- config	Сохранение текущей конфигурации в стартовую, чтобы при перезагрузке системы сохранились установленные настройки

3.4.12. Запуск службы Web-конфигуратора

Для того чтобы иметь возможность управления MSAN-ALS при помощи Webконфигуратора, необходимо, чтобы на устройстве был запущен специальный сервис - Web. По умолчанию в заводской конфигурации этот сервис отключен.

Запустить службу Web-конфигуратора можно с помощью следующей команды:

Таблица 46

Последовательность действий для запуска службы Web-конфигуратора

Команда	Описание
als\$> service web no shutdown	Запуск службы Web-конфигуратора

3.4.13. Service SNMP

Simple Network Management Protocol (SNMP) – это протокол прикладного уровня, который позволяет осуществлять обмен управляющей информацией между сетевыми устройствами. SNMP дает возможность управлять эксплуатационными характеристиками сети, находить и устранять неисправности в работе сети, осуществлять мониторинг текущих параметров сетевых устройств.

Сеть, управляемая SNMP, состоит из трех ключевых компонентов: управляемые устройства, агенты и системы управления сетью.

Управляемое устройство – сетевой узел, на котором установлен агент SNMP. Управляемые устройства собирают и сохраняют информацию о своем текущем состоянии и обеспечивают доступность этой информации для системы управления сетью. Для получения доступа к информации необходимо указание параметра community name. В данном случае, в роли управляемых устройств выступают блоки MKC-IP.

Агент – модуль программного обеспечения управления сетью, который находится на управляемом устройстве. Агент имеет доступ к информации об устройстве и транслирует эту информацию в форму, совместимую с SNMP. Так, параметры устройства с точки зрения SNMP представляются в виде «объектов», которые хранится в иерархической форме в Базе Информации Управления (Management Information Base, MIB). Каждый объект в иерархии MIB обладает уникальным идентификатором (Object Identifier, OID), с помощью которого можно получить доступ к данному объекту.

Система управления сетью – набор приложений, которые обеспечивают мониторинг и управление сетевыми устройствами.

3.4.13.1. Настройка протокола SNMP

Для перехода в режим настройки протокола SNMP необходимо выбрать соответствующий сервис, в данном случае SNMP.

als\$> service snmp		
als(service)[snmp]#		

После перехода в сервис системная подсказка отобразит информацию, соответствующую этому сервису. При нажатии *<Tab>* отобразится список доступных в этом

сервисе команд.

als(service)[snmp]#
Настро	йка параметров запуска SNMP
system	Установка места расположения системы и контактной информации
community	Установить сообщество (community) только для чтения и для чтения/записи
host	Установка хоста, с которого разрешен доступ к SNMP-агенту
user	Добавление/удаление пользователей SNMPv3
trap2sink	Добавление/удаление адресатов SNMP-трапов (trap)
informsink	Добавление/удаление адресатов SNMP-уведомлений (inform)
monitordelay	Установка частоты опроса MIB-объектов, при изменении которых отправляются
- 7	трапы из интервала [1, 300] в секундах
show	Просмотр конфигурации SNMP
shutdown	Остановить агент SNMP
als(service)[snmp]#

Для конфигурирования сервиса SNMP необходимо выполнить следующие задачи:

Таблица 47

Команда	Описание	
als(service)[snmp]# system contact Ivan_Ivanovich_Ivanov als(service)[snmp]# system location Telefonnya_Stanciya	Установка места расположения системы и контактной информации	
als(service)[snmp]# community read ro alsservice)[snmp]# community write rw	Установка community name только для чтения и для чтения/записи	
als(service)[snmp]# host all COmmunity read als(service)[snmp]# host 172.16.0.67 community write	Установка хоста, с которого разрешен доступ к SNMP-агенту. Существует возможность предоставить доступ всем хостам при помощи ключевого слова all	
als(service)[snmp]# trap2sink add 172.16.3.3	Добавление/удаление адресатов SNMP-трапов (trap)	
als (service)[snmp]# informsink add 172.16.0.66	Добавление/удаление адресатов SNMP-уведомлений (inform)	
als(service)[snmp]# monitordelay 30	Установка частоты опроса МІВ-объектов, при изменении которых отправляются трапы	

Последовательность действий для конфигурирования сервиса SNMP

Также для более защищенного доступа к управляемым устройствам имеется возможность использовать версию 3 протокола SNMP, которая позволяет организовать разграничение доступа на уровне пользователей.

При создании пользователя SNMP требуется указание паролей для аутентификации и для шифрования соединения. Эти задачи реализованы с помощью алгоритмов MD5 и DES соответственно. Следует заметить, что пароли при вводе не отображаются на экран.

Для того чтобы изменения конфигурации, связанные с добавлением/удалением пользователей, вступили в силу, необходимо перезапустить сервис SNMP.

Добавление пользователя SNMPv3 с правами только для чтения:

als(service)[snmp]# user add techuser ro Введите пароль для аутентификации нового пользователя (не менее 8 символов):

Введите пароль для шифрования соединения: (нажмите Enter для повторного использования аутентифицирующего пароля)

3.4.14. Обновление ПО

Обновления программного обеспечения MSAN-ALS устанавливаются только по сети с использованием протокола TFTP. При этом устройство выступает в качестве клиента, а рабочая станция, с которой производится обновление, — в качестве сервера. Соответственно, на ПК должен быть установлен и запущен сервер TFTP. Если потребуется, его можно загрузить с сайта «Компании АЛСиТЕК» (<u>http://alstec.ru</u>).

После установки сервера необходимо указать его корневую директорию, содержимое которой будет доступно для загрузки. Для этого нужно в меню *«File»* выбрать пункт *«Configure»*, перейти на вкладку *«TFTP Root Directory»* и указать диск и директорию. Ниже показан пример данного окна:

Окно выбора корневой директории		
сервера TFTP		
TFTP Server Configuration		
TFTP Root Directory Security Advanced Security Auto-Close Log		
CN		
[
<u></u>		
OK Cancel Help		
Рисунок 19		

Кроме того, на вкладке «Security» нужно выбрать пункт «Transmit and Receive files», для того чтобы включить возможность передачи и приема файлов с сервера.

Настройка параметров
безопасности сервера TFTP
🗄 TFTP Server Configuration
TFTP Root Directory Security Advanced Security Auto-Close Log
The TFTP Server can be configured to allow receiving of files only, transmitting of files only, or allow both, transmitting and receiving.
C Transmit only C Transmit and Receive files
OK Cancel Help
Pucculor 20

Произведя указанные настройки, оставьте основное окно программы открытым.

В выбранную корневую директорию сервера нужно скопировать файл обновления. После этого нужно подключиться к MSAN-ALS по протоколу Telnet или по COM-порту, войти в систему и выполнить следующую команду:

Таблица 48

Последовательность действий для установки обновления

Команда	Описание	
als\$> copy tftp:// 172.16.0.116/update flash:	Копирование файла обновления update с cepвера TFTP с IP-адресом 172.16.0.116	
als\$> reboot	Перезапуск системы. Примечание. Перезагружать устройство можно не сразу после обновления, а когда будет удобно Но следует помнить, что окончательно обновление будет установлено только после перезагрузки	

В процессе обновления на экран консоли будут выводиться принимаемые устройством байты файла обновления в качестве индикации. По завершении его установки на экране отобразится соответствующее сообщение.

3.4.15. Обновление ПО

Обновления программного обеспечения MSAN-ALS устанавливаются только по сети с использованием протокола TFTP. При этом устройство выступает в качестве клиента, а

рабочая станция, с которой производится обновление, — в качестве сервера. Соответственно, на ПК должен быть установлен и запущен сервер TFTP. Если потребуется, его можно загрузить с сайта «Компании АЛСиТЕК» (<u>http://alstec.ru</u>).

После установки сервера необходимо указать его корневую директорию, содержимое которой будет доступно для загрузки. Для этого нужно в меню *«File»* выбрать пункт *«Configure»*, перейти на вкладку *«TFTP Root Directory»* и указать диск и директорию. Ниже показан пример данного окна:

Окно выбора корневой директории
сервера TFTP
TFTP Server Configuration
TFTP Root Directory Security Advanced Security Auto-Close Log
TFTP-Root
Cancel Help
Рисунок 21

Кроме того, на вкладке «Security» нужно выбрать пункт «Transmit and Receive files», для того чтобы включить возможность передачи и приема файлов с сервера.

Настройка параметров
безопасности сервера TFTP
TFTP Server Configuration
TFTP Root Directory Security Advanced Security Auto-Close Log
The TFTP Server can be configured to allow receiving of files only, transmitting of files only, or allow both, transmitting and receiving.
Transmit and Receive files
OK Cancel Help
Рисунок 22

Произведя указанные настройки, оставьте основное окно программы открытым.

В выбранную корневую директорию сервера нужно скопировать файл обновления. После этого нужно подключиться к MSAN-ALS по протоколу Telnet или по COM-порту, войти в систему и выполнить следующую команду:

Таблица 49

Команда	Описание	
als\$> copy tftp:// 172.16.0.116/update flash:	Копирование файла обновления update с cepвера TFTP с IP-адресом 172.16.0.116	
als\$> reboot	Перезапуск системы. Примечание. Перезагружать устройство можно не сразу после обновления, а когда будет удобно. Но следует помнить, что окончательно обновление будет установлено только после перезагрузки	

Последовательность действий для установки обновления

В процессе обновления на экран консоли будут выводиться принимаемые устройством байты файла обновления в качестве индикации. По завершении его установки на экране отобразится соответствующее сообщение.

3.5. Плата VDSL-24

3.5.1. Подключение по СОМ-порту

Для подклюяения по СОМ-порту см. п. 3.1.1 Подключение по СОМ-порту.

Имя пользователя по умолчанию - admin, пароля нет. При желании пароль можно изменить после входа в систему.

После входа в систему отобразится приглашение командной строки CLI: User:admin

Password:

(als_sw) >

3.5.2. Подключение по протоколу Telnet

Для подключения по протоколу Telnet см. п.3.1.2 Подключение по протоколу Telnet. IP-адрес нужно настроить, используя подключение к блоку при помощи COM-порта.

3.5.3. Перед началом конфигурирования

Чтобы начать конфигурировать, необходимо определиться со следующими параметрами:

- Какой режим необходимо выставить: режим router или режим switch?
- Чтобы начать конфигурировать, необходимо определиться со следующими параметрами:
- Будет ли использоваться VLAN?
- В случае, если будет использоваться VLAN необходимо знать, какой VLAN Id будет использоваться для управления платы, а какие VLAN и в каком виде (tagged или untagged) будут использоваться на портах.
- Какой IP адрес, маска подсети (и возможно шлюз по-умолчанию) будет использоваться для управления платой?

Если вы знаете ответы на эти вопросы, то можно начать конфигурирование. Если нет, то вам необходимо обратиться к лицу, отвечающему за конфигурацию вашей сети.

Чтобы начать установку конфигурации устройства найдите тумблер включения, располагающийся на лицевой панели. Если включить тумблер питания, то на устройство подастся напряжение, и на лицевой панели загорится светодиодный индикатор "ПИТ".

3.5.4. Заводская конфигурация

Все устройства поставляются с завода сконфигурированными в минимально возможном объеме. Заводская конфигурация содержит в себе:

- Режим standalone.
- ІР адреса для управления не заданы.
- Скорость СОМ порта 115200 бит/с.
- Login user: *admin*
- Password: пустой
- Для привилегированного режима (enable) пароль глобальный и по умолчанию пустой.

Ниже представлен пример заводской конфигурации:

```
!Current Configuration:
!System Description "VDSL2 System - 24VDSL, 2 1GE, 6.1.0.5_als_ver1.2, Linux
2.6.22.1"
!System Software Version "6.1.0.5_als_ver1.2"
!System Up Time
                         "O days O hrs 3 mins 22 secs"
!Current SNTP Synchronized Time: Not Synchronized
ļ
vlan database
exit
configure
aaa authentication enable "enableList" enable
line console
serial baudrate 115200
exit
line telnet
exit
line ssh
exit
spanning-tree configuration name "00-13-AA-00-11-92"
router rip
exit
router ospf
exit
exit
```

3.5.5. Управление портами

По умолчанию все порты включены и настроены в режиме VDSL2 profile 17а. Состояние одного порта мы можем посмотреть с помощью команды:

Команда	Описание	Режим
show xdsl interface <unit port="" slot=""></unit>	Показать текущее состояние порта	Privileged EXEC
show xdsl interface all	Показать текущее состояние всех портов	Privileged EXEC
no shutdown(shutdown)	Включение(выключение) физического порта на интерфейсе	Interface Config

3.5.6. Назначение IP адреса

Как уже упоминалось, IP адрес управления в конфигурации по умолчанию не задан, его необходимо настроить, используя подключение к блоку при помощи СОМ-порта. После успешного входа в систему необходимо выполнить следующую команду:

Команда	Описание	Режим
network parms 172.16.0.1 255.255.0.0	Назначение адреса управления 172.16.0.1 с маской подсети 255.255.0.0	Privileged EXEC

Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status	Always Up
IP Address	172.16.0.1
Subnet Mask	255.255.0.0
Default Gateway	0.0.0.0
Burned In MAC Address	00:13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00:00
MAC Address Type	Burned In
Configured IPv4 Protocol	None
Management VLAN ID	1

3.5.6.1. Настройка получения IP адреса от DHCP сервера

Команда	Описание	Режим
network protocol dhcp	Включение DHCP клиента, для настрйоки интерфейса управления	Privileged EXEC

После выполнения данной команды коммутатор сбросит предыдущие настройки и будет осуществлять запрос настройки интерфейса управления у DHCP сервера. Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status	Always Up
IP Address	172.16.0.1
Subnet Mask	255.255.0.0
Default Gateway	172.16.0.254
Burned In MAC Address	00:13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00:00

MAC Address Type..... Burned In Configured IPv4 Protocol..... DHCP Management VLAN ID..... 1

3.5.6.2. Назначение шлюза по умолчанию

Локальная сеть, в которой находится станционное оборудование и рабочие станции, с которых производится конфигурирование, может быть построена таким образом, что первое и последние находятся в разных сегментах (подсетях). При этом подсети могут соединяться с помощью маршрутизатора. В этом случае на АЛС-24ххх необходимо настроить «шлюз по умолчанию» (default gateway), т.е. указать маршрутизатор, через который устройство будет отправлять ответы на запросы с рабочих станций.

Команда	Описание	Режим
network parms 172.16.0.1 255.255. 172.16.0.254	.0 Настройка интерфейса управление, указание IP, маски подсети и шлюза по умолчанию	Privileged EXEC

Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status Alw	ays Up
IP Address 172	.16.0.1
Subnet Mask 255	.255.0.0
Default Gateway 172	.16.0.254
Burned In MAC Address 00:	13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00
MAC Address Type Bur	ned In
Configured IPv4 Protocolnone	
Management VLAN ID 1	

3.5.7. Назначение VLAN в том числе на IP управления

3.5.7.1. Назначение VLAN на IP управления

Команда	Описание		Режим
network mgmt_vlan 100	Установка управления	VLAN	Privileged EXEC

Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status	Always Up
IP Address	172.16.0.1
Subnet Mask	255.255.0.0
Default Gateway	0.0.0.0
Burned In MAC Address	00:13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00:00

MAC Address Type..... Burned In Configured IPv4 Protocol..... None Management VLAN ID..... 100

3.5.7.2. Назначение VLAN на портах

Для того чтобы настроить VLAN на портах, необходимо указать свичу, какие VLAN он должен обрабатывать. Для этого необходимо выполнить следующую последовательность команд:

Команда	Описание
enable	Переход в привилегированный режим
vlan database	Переход в режим конфигурирования списка VLAN.
vlan 100,200	Добавление к списку обрабатываемых VLAN 100,200 VLAN id
exit	Выход из режима конфигурирования списка VLAN.

Далее приведены возможные примеры настройки VLAN на портах:

3.5.7.2.1. Пример: разделение портов на виртуальные

подсети

Условия:

- VLAN Id для 1,2 портов это 100, для 2,3 200
- Все пакеты вне коммутатора без меток

Команда	Описание
enable	Переход в привилегированный режим
configure	Переход в режим конфигурирования
interface 0/1	Переход в режим конфигурирования 1 интерфейса
vlan pvid 100	Назначение Port VLAN Identifier равный 100
vlan participation include 100	Включение порта 1 в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.
exit	Выход из режима конфигурирования 1 интерфейса
interface 0/2	Переход в режим конфигурирования 2 интерфейса
vlan pvid 100	Назначение Port VLAN Identifier равный 100
vlan participation include 100	Включение порта 2 в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.
exit	Выход из режима конфигурирования 2 интерфейса
interface 0/3	Переход в режим конфигурирования 3 интерфейса
vlan pvid 200	Назначение Port VLAN Identifier равный 200

Команда	Описание
vlan participation include 200	Включение порта 3 в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.
exit	Выход из режима конфигурирования 1 интерфейса
interface 0/4	Переход в режим конфигурирования 4 интерфейса
vlan pvid 200	Назначение Port VLAN Identifier равный 200
vlan participation include 200	Включение порта 4 в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.
exit	Выход из режима конфигурирования 2 интерфейса
exit	Выход из режима конфигурирования

3.5.7.2.2. Пример: разделение портов на виртуальные подсети в сети с поддержкой VLAN

Условия:

- VLAN Id для 1,2 портов это 100, для 2,3 200
- Все пакеты вне коммутатора с метками VLAN Id

Команда	Описание
enable	Переход в привилегированный режим
configure	Переход в режим конфигурирования
interface 0/1	Переход в режим конфигурирования 1 интерфейса
vlan pvid 100	Назначение Port VLAN Identifier равный 100
vlan participation include 100	Включение интерфейса в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.
vlan tagging 100	Включение на интерфейсе режима установки метки 100 на исходящие пакеты
exit	Выход из режима конфигурирования 1 интерфейса
interface 0/2	Переход в режим конфигурирования 2 интерфейса
vlan pvid 100	Назначение Port VLAN Identifier равный 100
vlan participation include 100	Включение порта 2 в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.
vlan tagging 100	Включение на интерфейсе режима установки метки 100 на исходящие пакеты
exit	Выход из режима конфигурирования 2 интерфейса
interface 0/3	Переход в режим конфигурирования 3 интерфейса
vlan pvid 200	Назначение Port VLAN Identifier равный 200
vlan participation include 200	Включение интерфейса в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.

Команда	Описание
vlan tagging 200	Включение на интерфейсе режима установки метки 200 на исходящие пакеты
exit	Выход из режима конфигурирования 1 интерфейса
interface 0/4	Переход в режим конфигурирования 4 интерфейса
vlan pvid 200	Назначение Port VLAN Identifier равный 200
vlan participation include 200	Включение интерфейса в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.
vlan tagging 200	Включение на интерфейсе режима установки метки 200 на исходящие пакеты
exit	Выход из режима конфигурирования 2 интерфейса
exit	Выход из режима конфигурирования

3.5.7.2.3. Пример: настройка Double Vlan(QinQ)

Условия:

- 10 порт пользовательский порт получающий пакеты с VLAN Id 100,
- 11 порт провайдера который устанавливает вторую метку VLAN Id 200.

То есть пакет приходящий на пользовательский порт имеет метку 100, выходя из порта 11 он уже имеет 2 метки 100 и 200.

Команда	Описание
enable	Переход в привилегированный режим
configure	Переход в режим конфигурирования
interface 0/10	Переход в режим конфигурирования 10 интерфейса
vlan pvid 200	Назначение Port VLAN Identifier равный 200
vlan participation include 200	Включение интерфейса в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.
exit	Выход из режима конфигурирования 10 порта
interface 0/11	Переход в режим конфигурирования 11 интерфейса
vlan tagging 200	Включение режима таггирования меткой 200
mode dvlan-tunnel	Установка на интерфейсе режима двойного таггирования
exit	Выход из режима конфигурирования 11 интерфейса
exit	Выход из режима конфигурирования

3.5.8. Обновление ПО

Обновления программного обеспечения VDSL-24 устанавливаются только по сети с

использованием протокола ТFTP. При этом устройство выступает в качестве клиента, а рабочая станция, с которой производится обновление, — в качестве сервера. Соответственно, на ПК должен быть установлен и запущен сервер TFTP, который можно скачать с сайта «Компании АЛСиТЕК» (*http://alstec.ru/*). После установки сервера необходимо указать его корневую директорию, содержимое которой будет доступно для загрузки. Для этого нужно в меню «File» выбрать пункт «Configure», перейти на вкладку «TFTP Root Directory» и указать диск и директорию. Произведя указанные настройки, оставьте основное окно программы открытым. В выбранную корневую директорию сервера нужно скопировать файл обновления. После этого нужно подключиться к VDSL-24 по протоколу telnet или по COM-порту, войти в систему и выполнить следующую команду:

Команда	Описание	Режим
copy tftp://172.16.0.254/image_version10 image1	Копирование с TFTP сервера файла image_version10 вместо к image1	Privileged EXEC

После завершения копирования, необходимо провести перезагрузку платы.

3.5.9. Типовые конфигурации и схемы

3.5.9.1. Организация Private Edge для изоляции абонентских портов друг от друга.

(a⊥s_sw)	#configure % переход в режим конфигурирования %
(als_sw)	#switchport protected 0 name "isolate" % создание группы для % % изоляции интерфейсов %
(als_sw)	(config) #interface 0/1 % переход в режим конфигурирования интерфейса %
(als_sw)	(interface 0/1)#switchport protected 0 % указание группы изоляции %
(als_sw)	(interface 0/1)#exit
(als_sw)	(config) #interface 0/24
(als_sw)	(interface 0/24)#switchport protected 0
(als_sw)	(interface 0/24)#exit
При	этом каждый из изолированных портов будет видеть Uplink порты, в данном

случае это любой порт из 25, 26, 27, 28.
3.5.9.2. Настройка RSTP

(als_sw) #configure % переход в режим конфигурирования %
(als_sw) (config)#spanning-tree % включаем spanning-tree %
(als_sw) (config)#spanning-tree configuration name "00-13-AA-FF-FF-02"
(als_sw) (config)#spanning-tree forceversion 802.1w % указываем версию STP %
(als_sw) (config)#spanning-tree port mode all % включаем STP на всех портах %
(als_sw) (config)#exit

3.5.9.3. Hacmpoйка IGMP, Multicast forwarding

3.5.9.4. Настройка IP ACL

Запрещаем все пакеты с IP назначения 172.16.0.12 на порту 0/23

3.5.9.5. Настройка МАС АСЬ

Запрещаем все пакеты с МАС источником 00:13:АА:45:71:34 на порту 0/23

3.5.9.6. Авторизация по RADIUS

Настройка авторизации telnet и SSH по Radius для пользователей коммутатора, при этом пароль для привилегированного режима (enable) проверяется локально и по умолчанию один для всех пользователей коммутатора. На RADIUS сервере должны быть указаны привилегии(service-type) пользователей.

```
(als_sw) #configure
(als_sw) (config)#aaa authentication login "defaultList" radius
             % указываем свитчу что login нужно авторищировать с помощью Radius
%
(als_sw) (config)#aaa authentication enable "enableList" enable
                           % указываем свитчу что пароль enable %
                           % определен глобально и он один для всех %
(als_sw) (config)#radius server host auth 172.16.67.39
                           % указание настроек Radius сервера %
(als_sw) (config)#radius server key auth 172.16.67.39
                           % указание настроек Radius сервера %
<далее вводится секретный ключ>
(als_sw) (config)#line telnet
(als_sw) (Config-telnet)# login authentication "defaultList"
                           % указвыем свитчу авторизировать доступ %
                           % по telnet с помощью defaultList %
```

74

(als_sw)	(Config-telnet)# exit
(als_sw)	(Config-ssh)#line ssh
(als_sw)	(Config-ssh)#login authentication "defaultList" % указвыем свитчу авторизировать доступ % % по telnet с помощью defaultList %
(als_sw)	(Config-ssh)#exit
(als_sw)	(config)#exit

3.5.9.7. QoS

Установка для входящего трафика с меткой VLAN Id 100, правила маркировки поля приоритета IP DSCP

(als_sw)	#configure % Переход в режим конфигурирования%
(als_sw)	(Config)#class-map match-all IPTV ipv4 % Создаем class map %
(als_sw)	(Config-classmap)#match vlan 100 % Указываем критерий классификации %
(als_sw)	(Config-classmap)#exit
(als_sw)	(Config)#policy-map std_policy in % Создаем новый policy-map %
(als_sw)	(Config-policy-map)#class IPTV % указываем соотвтествие между class-map и policy-map %
(als_sw)	(Config-policy-classmap)#mark ip-dscp cs7 % Устанавливаем поле приоритета IP DSCP %
(als_sw)	(Config-policy-classmap)#exit
(als_sw)	(Config)#exit
(als_sw)	(Config)# interface 0/10
(als_sw)	(Interface 0/10)#service-policy in IPTV_policy
%	» применяем политику для то интерфейса во входящем направлений
(als_sw)	(Interface 0/10)#exit
(als sw)	(Config)#exit

3.6. Плата SHDSL-16EFM

3.6.1. Подключение по СОМ-порту

Для подклюяения по СОМ-порту см. п. 3.1.1 Подключение по СОМ-порту.

Имя пользователя по умолчанию - admin, пароля нет. При желании пароль можно

изменить после входа в систему.

После входа в систему отобразится приглашение к вводу команд:

Для перехода к командной строке CLI необходимо выполнить команду: /trash/cli/cli.sh

После чего отобразится приглашение командной строки CLI.

3.6.2. Подключение по протоколу ssh

Для подключения по протоколу ssh см. п. 3.1.3 Подключение по протоколу SSH.

Если заводская конфигурация не была изменена, то SHDSL-16EFM имеет адрес 192.168.0.180 с маской подсети 255.255.255.0. В противном случае IP-адрес нужно определить, используя подключение к блоку при помощи СОМ-порта.

В системе зарегистрировано 2 пользователя :

имя пользователя	пароль	командная оболчка
specadmin	alsitec	sh
Superuser	123456	cli

3.6.3. Перед началом конфигурирования

Перед тем как перейти к настройке SHDSL-16EFM, необходимо определиться со следующими параметрами:

- 1. Требуется ли использование VLAN?
- **2.** В случае, если будет использоваться VLAN необходимо знать, какой VLAN ID будет использоваться для управления платы, а какой (какие) для абонентского доступа.
- **3.** Какой IP адрес, маска подсети и, если требуется, шлюз по-умолчанию будет использоваться для управления платой.
- **4.** Какой (какие) VPI/VCI будут использоваться для каждого VLAN ID абонентского доступа.

3.6.4. Заводская конфигурация

SHDSL-16EFM поставляется с некоторой начальной конфигурацией, называемой заводской (factory-config). Кроме того, на устройстве существуют дополнительные три предопределенных конфигурации:

- shdsl_v2-factory1.conf без использования VLAN;
- shdsl_v2-factory2.conf с использованием VLAN для абонентского трафика и отдельного VLAN для управления;
- shdsl_v2-factory3.conf с использованием разных VLAN для интернет, IPTV, VoIP и управления.

Если после изменения текущей конфигурации (running-config) и замены ей стартовой конфигурации, оказалось, что устройство работает не так, как ожидалось, всегда существует возможность вернуться к заводской конфигурации. Для этого следует выполнить команду

copy factory-config startup-config

и перезагрузить устройство командой

reboot

Для возвращения к первоначальным настройкам вместо заводской можно использовать одну из перечисленных конфигураций. Они, так же как и любые пользовательские конфигурации, находятся в области памяти **nvram**.

3.6.5. Назначение IP-адреса

3.6.5.1. Конфигурация без использования VLAN

Как уже упоминалось, в заводской конфигурации SHDSL-16EFM присвоен адрес 192.168.0.180 с маской подсети 255.255.255.0. Для его изменения нужно использовать подключение к блоку при помощи СОМ-порта.

После успешного входа в систему необходимо выполнить следующие действия:

Таблица 50

Последовательность действий для изменения ІР-адреса устройства

Команда	Описание			
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор).			
als(cntx-ip)[router]# ifconfig hbr0 172.16.1.21 netmaskНазначение адреса 172.16.1.21 с маской п 255.255.0.0 для интерфейса hbr0 с последу включением этого интерфейса.				
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую, чтобы при следующем запуске устройство использовало новый установленный IP-адрес.			

При создании интерфейса dslam_bridge br0 автоматически создается «хост-интерфейс» (hbr0), обеспечивающий возможность подключения к устройству и его управления. Задача хост-интерфейса - выбирать из всех приходящих на мост пакетов только те пакеты, которые предназначены именно данному хосту (процессору), а не для пересылки мостом с одного порта на другой. Такое разделение непосредственно моста и его управляющего интерфейса позволяет, отключив хост-интерфейс (т.е. отключив управление), оставить поток пакетов на его нижнем уровне.

Такие интерфейсы автоматически порождаются всеми Ethernet-совместимыми интерфейсами. Их имена отличаются от имен порождающих интерфейсов буквой «h» в начале (от слова «host»). Таким образом, хост-интерфейс для порта uplink0 будет иметь название huplink0, а для интерфейса еоа0 — heoa0.

Кроме этого, Uplink-порты и интерфейсы EoA имеют одинаковые команды управления взаимодействия с мостом со следующим синтаксисом:

[no] listen [bridge]

Если у порта или интерфейса в настройках установлено

no listen

то он не будет перенаправлять мосту, к которому он подключен, выбранные для устройства пакеты. Наоборот, если установлено

listen bridge

то интерфейс или порт будет отправлять пакеты на мост и получать их с него.

Таким образом, для того чтобы отключить управление со стороны какого-либо порта, необходимо в его конфигурации указать

no listen

и не назначать IP-адрес на его хост-интерфейс.

3.6.6. Конфигурация с использованием VLAN

В том случае, если для управлением SHDSL-16EFM планируется использовать отдельный VLAN, необходимо настроить управляющий интерфейс так, чтобы он имел возможность принимать пакеты, содержащие метку (тег) данного VLAN.

Для того чтобы настроить управление с помощью интерфейса hbro по управляющему VLAN с меткой 1000, нужно выполнить следующие команды :

Таблица 51

Команда	Описание
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор).
als(cntx-ip)[router]# ifconfig hbr0 mtu 1504 up	Установка нового максимального размера передаваемого пакета (фрейма) для интерфейса hbr0. Указанный размер на 4 байта больше обычного, что соответствует пакету, содержащему метку VLAN.
als(cntx-ip)[router]# vconfig add hbr0 1000	Создание нового интерфейса hbr0.1000, который и будет представлять интерфейс hbr0 в управляющем VLAN с меткой 1000.
als(cntx-ip)[router]# ifconfig hbr0.1000 172.16.1.10 netmask 255.255.0.0 up	Назначение адреса 172.16.1.10 с маской подсети 255.255.0.0 для интерфейса hbr0.1000 с последующим включением этого интерфейса.
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую.

Последовательность действий для настройки управления устройством по VLAN

Для удаления интерфейса hbro из VLAN 1000, нужно выполнить приведенную ниже команду:

als(cntx-ip)[router]# vconfig rem hbr0.1000

3.6.7. Назначение шлюза по умолчанию

Локальная сеть, в которой находится станционное оборудование и рабочие станции, с которых производится конфигурирование, может быть построена таким образом, что первое и последние находятся в разных сегментах (подсетях). При этом подсети могут соединяться с помощью маршрутизатора.

В этом случае на SHDSL-16EFM необходимо настроить «шлюз по умолчанию» (default gateway), т.е. указать маршрутизатор, через который устройство будет отправлять ответы на запросы с рабочих станций. Сделать это можно с помощью следующих команд:

Таблица 52

Последовательность действий для настройки шлюза по умолчанию

Команда	Описание					
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор).					
als(cntx-ip)[router]# route 0.0.0.0 0.0.0.0 gateway 172.16.1.111	Указание хоста, на котором есть интерфейс с IP-адресом 172.16.1.111, в качестве шлюза по умолчанию. Естественно, конфигурируемый SHDSL-16EFM должен находиться в той же подсети, что и указанный сетевой интерфейс.					
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую.					

3.6.8. Обновление ПО

3.6.8.1. Установка образов через загрузчик

Программное обеспечение (ПО) располагается на Flash-ПЗУ и состоит из загрузчика системы RedBoot и ПО SHDSL-16EFM, которое разделено на 4 раздела(образа):

- zImage образ ядра ОС Linux;
- rootfs набор системных библиотек;
- trash программное обеспечение комплекса (ПО SHDSL-16EFM);
- logs лог файлы, работы ПО комплекса;

Обновления программного обеспечения SHDSL-16EFM устанавливаются по сети с использованием протокола TFTP. При этом устройство выступает в качестве клиента, а рабочая станция, с которой производится обновление, — в качестве сервера. Соответственно, на ПК должен быть установлен и запущен сервер TFTP. Если потребуется, его можно загрузить с сайта «Компании АЛСиТЕК» (<u>www.alstec.ru</u>).

После установки сервера необходимо указать его корневую директорию, содержимое которой будет доступно для загрузки. Для этого нужно в меню «*File*» выбрать пункт «*Configure*», перейти на вкладку «*TFTP Root Directory*» и указать диск и директорию. Ниже показан пример данного окна:

Окно выбора корневой директории
сервера ТҒТР
TFTP Server Configuration
TFTP Root Directory Security Advanced Security Auto-Close Log
<u> </u>
Cancel Help
Рисунок 24

Кроме того, на вкладке *«Security»* нужно выбрать пункт *«Transmit and Receive files»*, для того чтобы включить возможность передачи и приема файлов с сервера.

Настройка параметров
безопасности сервера TFTP
TFTP Server Configuration
TFTP Root Directory Security Advanced Security Auto-Close Log
The TFTP Server can be configured to allow receiving of files only, transmitting of files only, or allow both, transmitting and receiving. Receive only Transmit only Transmit and Receive files
ОК Сапсеl Нер Рисунок 25

Произведя указанные настройки, оставьте основное окно программы открытым.

В выбранную корневую директорию сервера нужно скопировать файл обновления. После этого нужно подключиться к SHDSL-16EFM по COM-порту и перезагрузить плату. После включения контроллера на экране должны начать появляться символы (начиная с "+"), что означает работоспособность контроллера (и его COM порта). Чтобы не прервать загрузку и перейти режим работы с загрузчиком нажмите "Ctrl-C".

Сеанс начала работы загрузчика:

Trying NPE-C...success. Using NPE-C with PHY 1. Ethernet lan: MAC address 00:02:b3:02:02:02 IP: 192.168.0.200/255.255.255.0, Gateway: 0.0.0.0 // ір-адрес и маска подсети загрузчика // после загрузки системы ір и мас Default server: 0.0.0.0 // адреса изменятся !!! RedBoot(tm) bootstrap and debug environment [ROM] Red Hat certified release, version 2.04 - built 08:06:17, Feb 29 2008 Platform: KIXRP435 Development Platform (IXP43X) BE Copyright (C) 2000, 2001, 2002, 2003, 2004, 2007 Free Software Foundation, Inc. RAM: 0x00000000-0x08000000, [0x000346a8-0x07fc1000] available FLASH: 0x50000000 - 0x51000000, 128 blocks of 0x00020000 bytes each. == Executing boot script in 1.000 seconds - enter ^C to abort ^C // остановка работы загрузчика и перевод его в режим конфигурации RedBoot> // загрузчик перешел в режим конфигурирования

Для начала установки необходимо инициализировать список разделов Flash. Для этого в строке приглашения загрузчика введите команду:

fi unlock -f 0x50000000 -l 0x1000000

Эта команда полностью отформатирует Flash, все данные будут утеряны. Далее необходимо разрешить запись во Flash командой:

fi init

Теперь необходимо установить образы Linux. Наиболее быстрый способ загрузить их в оперативную память - по Ethernet с предварительно настроенного tftp сервера. После загрузки образов в память, их необходимо перенести в разделы Flash. Если в какой-то момент произошел сбой (отключилось питание, перестал работать Ethernet), то можно продолжить с загрузки текущего образа, при этом загрузчик попытается запустить не полностью установленную систему. Чтобы помешать ему, нажмите "Ctrl-C". Также необходимо повторно разрешить запись во Flash. Для реализации описанного, необходимо выполнить следующий набор команд:

```
fi unlock -f 0x50000000 -l 0x1000000
fi init
load zImage -v -r -m tftp -h 192.168.0.68 -b %{FREEMEMLO}
fi create -b %{FREEMEMLO} -l 0x200000 kernel
load rootfs -v -r -m tftp -h 192.168.0.68 -b %{FREEMEMLO}
fi create -b %{FREEMEMLO} -l 0x500000 rootfs
load trash -v -r -m tftp -h 192.168.0.68 -b %{FREEMEMLO}
fi create -b %{FREEMEMLO} -l 0x600000 trash
load logs -v -r -m tftp -h 192.168.0.68 -b %{FREEMEMLO}
fi create -b %{FREEMEMLO} -l 0x200000 trash
```

где 192.168.0.68 - IP адрес tftp сервера.

После успешной установки образов во Flash необходимо перезагрузить контроллер командой reset или простым выключением/включением. Если всё было сделано верно, то загрузка системы начнется автоматически.

Для просмотра статистики на интерфейсе необходимо ввести следующую команду

(интерфейс VDSL порта совпадает с соответствующим по порядку Ethernet интерфейсом):

Команда	Описание	Режим				
<pre>show interface ethernet <unit port="" slot=""></unit></pre>	Просмотр статистики по интерфейсу	Global config				
(als_sw) #snow interface ethernet 0/18						
Total Packets Received (Octets)	2039507					
Packets Received 65-127 Octets						
Packets Received 128-255 Octets 1083						
Packets Received 256-511 Octets 632						
Packets Received 512-1023 Octets	1 0					
Packets Received > 1522 Octets						
Packets RX and TX 64 Octets						

3.6.9. Удаленное обновление через WEB-интерфейс

Обновление представляет из себя файл архива, который передается через браузер на плату SHDSL-16EFM. Для этого необходимо запустить интернет браузер и перейти по ссылке <u>http://192.168.0.180/cgi-bin/upload.cgi</u>, где 192.168.0.180 — ip-адресплаты. В появившейся странице достаточно выбрать архив и нажатькнопку обновления, откроется вторая страница, когда она загрузится окончательно (зависит от объема обновления), После завершения обновления плата **автоматически уходит в перезагрузку**.

			Обновл	ение через	WEB-интер	офейс			
🚷 http:	//192.1	168.0.1	80/cgi-bi	n/upload.o	gi - Opera				
Фаил	правка	вид	закладки	виджеты	инструменты	Справн	(a	_	
* =	http://19	92.168.0	.180/c	•					
* *	•	₩ 🥵	1 😚 🖉	📄 http://	192.168.0.180/c	gi-bin/uplo	ad.cgi		
"C:\tftp	\efm16_\	webup	Обзор	Upload s	oftware update				
Откры	ть								2 🛛
	Папка:	🕕 tft	p			. 0	1	. -	
Нед. доку Рабоч Мои до	авние менты ий стол	efm	16_webupdat	ie					
		Имя ф	айла:	efm16_webup	date				Открыть
Сет	евое	Тип фа	айлов:	Все файлы (*.	×)		•		Отмена
				Pucva	IOK 26				

3.7. Плата АЛС-АУ

3.7.1. Подключение к устройству по протоколу Ethernet

Доступ по Ethernet необходим для мониторинга состояния устройства с помощью различных имеющихся интерфейсов. Для обеспечения их работоспособности, необходимо произвести действия, описанные ниже.

3.7.1.1. Настройка компьютера программиста

Для подключения к блоку при помощи протокола Ethernet необходимо, чтобы у ПК программиста был физический доступ до устройства через сеть Ethernet и правильно сделаны сетевые настройки операционной системы.

Для того, чтобы правильно настроить операционную систему на компьютере программиста, достаточно знать IP-адрес устройства. IP-адрес может быть различным, в зависимости от конфигурации устройства. Если заводская конфигурация не была изменена, то устройство будет иметь IP адрес 192.168.0.181.

После определения IP-адреса устройства необходимо проверить настройки сети на ПК, с которого будет осуществляться конфигурирование. Следует помнить, что связь между рабочей станцией и АЛС-АУ может быть установлена только в том случае, когда они имеют IP-адреса из одной подсети.

К примеру: если на устройстве используется заводская конфигурация, то сетевой карте ПК может быть присвоен любой адрес, начиная с 192.168.0.1 и заканчивая 192.168.0.254, за исключением адреса самого АЛС-АУ 192.168.0.181. Пример настройки сетевой карты в ОС Windows показан на рисунке ниже:

Установка IP-ад	реса для ПК
войства: Протокол Интернета	a (TCP/IP) 🛛 🖓
Общие	
Параметры IP могут назначаться ат поддерживает эту возможность. В г IP можно получить у сетевого адмии	этоматически, если сеть противном случае параметры нистратора.
🔘 Получить IP-адрес автоматичес	жи
📀 Использовать следующий IP-а,	ipec:
ІР-адрес:	192.168.0.1
Маска подсети:	255.255.0
Основной шлюз:	
О Поличить адрес DNS-сервера а	втоматически
 О Использовать следующие адре 	еса DNS-серверов:
Предпочитаемый DNS-сервер:	
Альтернативный DNS-сервер:	
	Дополнительно
	ОК Отмена
Рисунов	: 27

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping. Для этого нужно выполнить следующие действия (для OC Windows и блока

с загруженной заводской конфигурацией):

- **1.** Выберите из меню «Пуск»: Программы → Стандартные (Accessories) → Командная строка.
- **2.** В открывшемся окне введите команду ping 192.168.0.181 и нажмите клавишу Enter.
- **3.** Если на экране появилась надпись «Превышен интервал ожидания для запроса», то это означает, что АЛС-АУ недоступен. В этом случае необходимо проверить настройки IP-протокола на ПК и подключения ПК к данному устройству.
- **4.** В случаю появления ответов от АЛС-АУ тестирование настроек IP и доступности блока можно считать успешным.

Использование команды ping				
C:\WINDOWS\system32\cmd.exe	- 🗆 X			
Microsoft Windows XP [Версия 5.1.2600] <c> Корпорация Майкрософт, 1985—2001.</c>	-			
C:\Documents and Settings\Admin>ping 192.168.0.180				
Обмен пакетами с 192.168.0.180 по 32 байт:				
Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128 Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128 Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128 Ответ от 192.168.0.180: число байт=32 время<1мс TTL=128				
Статистика Ping для 192.168.0.180: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь), Приблизительное время приема-передачи в мс: Минимальное = Омсек, Максимальное = 0 мсек, Среднее = 0 мсек				
C:\Documents and Settings\Admin>_				
	-			
Рисунок 28				

3.7.2. Конфигурирование

Устройство АЛС-АУ позиционируется как оконечное устройство на стороне абонента. АЛС-АУ работает максимально прозрачно для абонентов и не требует какого-либо специального конфигурирования.

3.7.3. Удаленное обновление ПО через WEB-интерфейс

Обновление представляет из себя файл архива, который передается через браузер на плату АЛС-АУ. Для этого необходимо запустить интернет браузер и перейти по ссылке <u>http://192.168.0.180/cgi-bin/upload.cgi</u>, где 192.168.0.180 – ip-адресплаты. В появившейся странице достаточно выбрать архив и нажатькнопку обновления, откроется вторая страница,

когда она загрузится окончательно (зависит от объема обновления), После завершения обновления плата автоматически уходит в перезагрузку.

3.8. Платы АЛС-24200, АЛС-24300, АЛС-24400L

Данный раздел описывает методы конфигурирования АЛС-24200, АЛС-24300, АЛС-24400L.

3.8.1. Подключение по СОМ-порту

Для подклюяения по СОМ-порту см. п. 3.1.1 Подключение по СОМ-порту.

Имя пользователя по умолчанию - admin, пароля нет. При желании пароль можно изменить после входа в систему.

После входа в систему отобразится приглашение командной строки CLI.

Конфигурация по умолчанию может быть изменена. IP адрес в конфигурации по умолчанию не задан, его необходимо настроить, используя подключение к блоку при помощи СОМ-порта.

3.8.2. Подключение по протоколу Telnet

Для подключения по протоколу Telnet см. п. 3.1.2 Подключение по протоколу Telnet. IP-адрес нужно настроить, используя подключение к блоку при помощи COM-порта.

3.8.3. Перед началом конфигурирования

Чтобы начать конфигурировать, необходимо определиться со следующими параметрами:

- Будет ли использоваться VLAN?
- В случае, если будет использоваться VLAN необходимо знать, какой VLAN Id будет использоваться для управления платы, а какие VLAN и в каком виде (tagged или untagged) будут использоваться на портах.

• Какой IP адрес, маска подсети (и возможно шлюз по-умолчанию) будет использоваться для управления платой?

Если вы знаете ответы на эти вопросы, то можно начать конфигурирование. Если нет, то вам необходимо обратиться к лицу, отвечающему за конфигурацию вашей сети.

Чтобы начать установку конфигурации устройства найдите тумблер включения, располагающийся на лицевой панели. Если включить тумблер питания, то на устройство подастся напряжение, и на лицевой панели загорится светодиодный индикатор "ПИТ".

3.8.4. Заводская конфигурация

Все устройства поставляются с завода сконфигурированными в минимально возможном объеме. Заводская конфигурация содержит в себе:

- Режим standalone.
- ІР адреса для управления не заданы.
- Скорость СОМ порта 115200 бит/с.
- Login user: admin
- Password: пустой
- Для привилегированного режима (enable) пароль глобальный и по умолчанию пустой.

Ниже представлен пример заводской конфигурации:

```
!Current Configuration:
!System Description "ALS24200 System - 24GE, 4 10GE, 6.1.0.5_als_ver1.2, Linux
2.6.22.1"
!System Software Version "6.1.0.5_als_ver1.2"
                         "O days O hrs 3 mins 22 secs"
!System Up Time
!Current SNTP Synchronized Time: Not Synchronized
1
vlan database
exit
configure
aaa authentication enable "enableList" enable
line console
serial baudrate 115200
exit
line telnet
exit
line ssh
exit
spanning-tree configuration name "00-13-AA-00-11-92"
router rip
exit
router ospf
exit
exit
```

3.8.5. Управление портами

По умолчанию все порты включены и настроены в режиме Automatic Negatiation. Состояние одного порта мы можем посмотреть с помощью команды:

Команда	Описание	Режим
<pre>show port <unit port="" slot=""></unit></pre>	Показать текущее состояние порта	Privileged EXEC
show port all	Показать текущее состояние всех портов	Privileged EXEC

(als_sw) #show	v port O	/1					
Tutt	T	Admin	Physical	Physical	Link	Link	LACP	Actor
INTT	туре	Mode	моае	Status	Status	Trap	Mode	Ilmeout
0/1		Enable	Auto	1000Full	Up	Enable	Enable	long
(als sw) #show	v port a	11					
(,	Admin	 Physical	Physical	Link	Link	LACP	Actor
Intf	Туре	Mode	Mode	Status	Status	Trap	Mode	Timeout
0/1		Enable	Auto	1000Full	 Up	Enable	Enable	lona
0/2		Enable	Auto		Down	Enable	Enable	long
0/3		Enable	Auto		Down	Enable	Enable	long
0/4		Enable	Auto		Down	Enable	Enable	long
0/5		Enable	Auto		Down	Enable	Enable	long
0/6		Enable	Auto		Down	Enable	Enable	long
0/7		Enable	Auto		Down	Enable	Enable	long
0/8		Enable	Auto		Down	Enable	Enable	long
0/9		Enable	Auto		Down	Enable	Enable	long
0/10		Enable	Auto		Down	Enable	Enable	long
0/11		Enable	Auto		Down	Enable	Enable	long
0/12		Enable	Auto		Down	Enable	Enable	long
0/13		Enable	Auto		Down	Enable	Enable	long
0/14		Enable	Auto		Down	Enable	Enable	long
0/15		Enable	Auto		Down	Enable	Enable	long
0/16		Enable	Auto		Down	Enable	Enable	long
0/17		Enable	Auto		Down	Enable	Enable	long
0/18		Enable	Auto		Down	Enable	Enable	long
0/19		Enable	Auto		Down	Enable	Enable	long
0/20		Enable	Auto		Down	Enable	Enable	Long

 <unit/slot/port> - способ указания порта интерфейса. Где unit – номер устройства в стеке, если коммутатор не в стеке, то поле unit не указывается. Slot – слот идентифицирует физическое устройство в наборе или LAG (Link Aggregation Port) или интерфейс для маршрутизации., Port – номер физического порта.

Команда	Описание	Режим
no shutdown(shutdown)	Включение(выключение) фищического порта на интерфейсе	Interface Config
no shutdown all(shutdown all)	Включение(выключение) всех	Interface

Ниже представлены команды управления портами:

Команда	Описание	Режим
	портов	Config
auto-negotiate(no auto-negotiate)	Включение(выключение) на физическом порту интерфейса режима Auto Negotiation	Interface Config
auto-negotiate all(no auto-negotiate all)	Включение(выключение) на всех физических портах интерфейсов режима Auto Negotiation	Interface Config
<pre>speed <10 100> <half-duplex full- duplex></half-duplex full- </pre>	Указание скорости и режима duplex на порту интерфейса	Interface Config
<pre>speed all <10 100> <half-duplex full- duplex></half-duplex full- </pre>	Указание скорости и режима duplex на всех портах	Interface Config

3.8.6. Назначение IP адреса

Как уже упоминалось, IP адрес управления в конфигурации по умолчанию не задан, его необходимо настроить, используя подключение к блоку при помощи СОМ-порта. После успешного входа в систему необходимо выполнить следующую команду:

Команда	Описание	Режим
network parms 172.16.0.1 255.255.0.0	Назначение адреса управления 172.16.0.1 с маской подсети 255.255.0.0	Privileged EXEC

Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status	Always Up
IP Address	172.16.0.1
Subnet Mask	255.255.0.0
Default Gateway	0.0.0.0
Burned In MAC Address	00:13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00:00
MAC Address Type	Burned In
Configured IPv4 Protocol	None
Management VLAN ID	1

3.8.6.1. Настройка получения IP адреса от DHCP сервера

Команда	Описание	Режим
network protocol dhcp	Включение DHCP клиента, для настрйоки интерфейса управления	Privileged EXEC

После выполнения данной команды коммутатор сбросит предыдущие настройки и будет осуществлять запрос настройки интерфейса управления у DHCP сервера. Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status	Always Up
IP Address	172.16.0.1
Subnet Mask	255.255.0.0
Default Gateway	172.16.0.254
Burned In MAC Address	00:13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00:00
MAC Address Type	Burned In
Configured IPv4 Protocol	DHCP
Management VLAN ID	1

3.8.6.2. Назначение шлюза по умолчанию

Локальная сеть, в которой находится станционное оборудование и рабочие станции, с которых производится конфигурирование, может быть построена таким образом, что первое и последние находятся в разных сегментах (подсетях). При этом подсети могут соединяться с помощью маршрутизатора. В этом случае на АЛС-24ххх необходимо настроить «шлюз по умолчанию» (default gateway), т.е. указать маршрутизатор, через который устройство будет отправлять ответы на запросы с рабочих станций.

Команда	Описание	Режим
network parms 172.16.0.1 255.255.0.0 172.16.0.254	Настройка интерфейса управление, указание IP, маски подсети и шлюза по умолчанию	Privileged EXEC

Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status	Always Up
IP Address	172.16.0.1
Subnet Mask	255.255.0.0
Default Gateway	172.16.0.254
Burned In MAC Address	00:13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00:00
MAC Address Type	Burned In
Configured IPv4 Protocol	none
Management VLAN ID	1

3.8.7. Назначение VLAN в том числе на IP управления

3.8.7.1. Назначение VLAN на IP управления

Команда	Описание		Режим
network mgmt_vlan 100	Установка управления	VLAN	Privileged EXEC

Для просмотра настроек интерфейса управления, необходимо ввести команду:

(als_sw) #show network	
Interface Status	Always Up
IP Address	172.16.0.1
Subnet Mask	255.255.0.0
Default Gateway	0.0.0.0
Burned In MAC Address	00:13:AA:00:11:92
Locally Administered MAC address	00:00:00:00:00:00
MAC Address Type	Burned In
Configured IPv4 Protocol	None
Management VLAN ID	100

3.8.7.2. Назначение VLAN на портах

Для того чтобы настроить VLAN на портах, необходимо указать свичу, какие VLAN он должен обрабатывать. Для этого необходимо выполнить следующую последовательность команд:

Команда	Описание		
enable	Переход в привилегированный режим		
vlan database	Переход в режим конфигурирования списка VLAN.		
vlan 100,200	Добавление к списку обрабатываемых VLAN 100,200 VLAN id		
exit	Выход из режима конфигурирования списка VLAN.		

Далее приведены возможные примеры настройки VLAN на портах:

3.8.7.2.1. Пример: разделение портов на виртуальные

подсети

Условия:

- VLAN Id для 1,2 портов это 100, для 2,3 200
- Все пакеты вне коммутатора без меток

Команда	Описание		
enable	Переход в привилегированный режим		
configure	Переход в режим конфигурирования		
interface 0/1	Переход в режим конфигурирования 1 интерфейса		
vlan pvid 100	Назначение Port VLAN Identifier равный 100		
vlan participation include 100	Включение порта 1 в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.		
exit	Выход из режима конфигурирования 1 интерфейса		
interface 0/2	Переход в режим конфигурирования 2 интерфейса		
vlan pvid 100	Назначение Port VLAN Identifier равный 100		
vlan participation include 100	Включение порта 2 в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.		

Команда	Описание			
exit	Выход из режима конфигурирования 2 интерфейса			
interface 0/3	Переход в режим конфигурирования 3 интерфейса			
vlan pvid 200	Назначение Port VLAN Identifier равный 200			
vlan participation include 200	Включение порта 3 в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.			
exit	Выход из режима конфигурирования 1 интерфейса			
interface 0/4	Переход в режим конфигурирования 4 интерфейса			
vlan pvid 200	Назначение Port VLAN Identifier равный 200			
vlan participation include 200	Включение порта 4 в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.			
exit	Выход из режима конфигурирования 2 интерфейса			
exit	Выход из режима конфигурирования			

3.8.7.2.2. Пример: разделение портов на виртуальные подсети в сети с поддержкой VLAN

Условия:

- VLAN Id для 1,2 портов это 100, для 2,3 200
- Все пакеты вне коммутатора с метками VLAN Id

Команда	Описание			
enable	Переход в привилегированный режим			
configure	Переход в режим конфигурирования			
interface 0/1	Переход в режим конфигурирования 1 интерфейса			
vlan pvid 100	Назначение Port VLAN Identifier равный 100			
vlan participation include 100	Включение интерфейса в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.			
vlan tagging 100	Включение на интерфейсе режима установки метки 100 на исходящие пакеты			
exit	Выход из режима конфигурирования 1 интерфейса			
interface 0/2	Переход в режим конфигурирования 2 интерфейса			
vlan pvid 100	Назначение Port VLAN Identifier равный 100			
vlan participation include 100	Включение порта 2 в группу обработки VLAN 100. При этом по умолчанию включается режим снятие метки.			
vlan tagging 100	Включение на интерфейсе режима установки метки 100 на исходящие пакеты			
exit	Выход из режима конфигурирования 2 интерфейса			
interface 0/3	Переход в режим конфигурирования 3 интерфейса			

Команда	Описание			
vlan pvid 200	Назначение Port VLAN Identifier равный 200			
vlan participation include 200	Включение интерфейса в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.			
vlan tagging 200	Включение на интерфейсе режима установки метки 200 на исходящие пакеты			
exit	Выход из режима конфигурирования 1 интерфейса			
interface 0/4	Переход в режим конфигурирования 4 интерфейса			
vlan pvid 200	Назначение Port VLAN Identifier равный 200			
vlan participation include 200	Включение интерфейса в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.			
vlan tagging 200	Включение на интерфейсе режима установки метки 200 на исходящие пакеты			
exit	Выход из режима конфигурирования 2 интерфейса			
exit	Выход из режима конфигурирования			

3.8.7.2.3. Пример: настройка Double Vlan(QinQ)

Условия:

- 10 порт пользовательский порт получающий пакеты с VLAN Id 100,
- 11 порт провайдера который устанавливает вторую метку VLAN Id 200.

То есть пакет приходящий на пользовательский порт имеет метку 100, выходя из порта 11 он уже имеет 2 метки 100 и 200.

Команда	Описание					
enable	Переход в привилегированный режим					
configure	Переход в режим конфигурирования					
interface 0/10	Переход в режим конфигурирования 10 интерфейса					
vlan pvid 200	Назначение Port VLAN Identifier равный 200					
vlan participation include 200	Включение интерфейса в группу обработки VLAN 200. При этом по умолчанию включается режим снятие метки.					
exit	Выход из режима конфигурирования 10 порта					
interface 0/11	Переход в режим конфигурирования 11 интерфейса					
vlan tagging 200	Включение режима таггирования меткой 200					
mode dvlan-tunnel	Установка на интерфейсе режима двойного таггирования					
exit	Выход из режима конфигурирования 11 интерфейса					
exit	Выход из режима конфигурирования					

3.8.8. Обновление ПО

Обновления программного обеспечения VDSL-24 устанавливаются только по сети с использованием протокола TFTP. При этом устройство выступает в качестве клиента, а рабочая станция, с которой производится обновление, — в качестве сервера. Соответственно, на ПК должен быть установлен и запущен сервер TFTP, который можно скачать с сайта «Компании АЛСиТЕК» (*http://alstec.ru/*). После установки сервера необходимо указать его корневую директорию, содержимое которой будет доступно для загрузки. Для этого нужно в меню «File» выбрать пункт «Configure», перейти на вкладку «TFTP Root Directory» и указать диск и директорию. Произведя указанные настройки, оставьте основное окно программы открытым. В выбранную корневую директорию сервера нужно скопировать файл обновления. После этого нужно подключиться к VDSL-24 по протоколу telnet или по COM-порту, войти в систему и выполнить следующую команду:

Команда	Описание	Режим
copy tftp://172.16.0.254/image_version10 image1	Копирование с ТFTP сервера файла image_version10 вместо к image1	Privileged EXEC

После завершения копирования, необходимо провести перезагрузку платы.

3.8.9. Типовые конфигурации и схемы

3.8.9.1. Организация Private Edge для изоляции абонентских портов друг от друга

(als_sw) a	#configure % переход в режим конфигурирования %							
(als_sw) a	#switchport protected 0 name "isolate" % создание группы для % % изоляции интерфейсов %							
(als_sw)	(config) #interface 0/1 % переход в режим конфигурирования интерфейса %							
(als_sw)	(interface 0/1)#switchport protected 0 % указание группы изоляции %							
(als_sw)	(interface 0/1)#exit							
(als_sw)	(config) #interface 0/24							
(als_sw)	(interface 0/24)#switchport protected 0							
(als_sw)	(interface 0/24)#exit							

случае это любой порт из 25, 26, 27, 28.

3.8.9.2. Настройка RSTP

(als_sw) #configure % переход в режим конфигурирования %
(als_sw) (config)#spanning-tree % включаем spanning-tree %
(als_sw) (config)#spanning-tree configuration name "00-13-AA-FF-FF-02"
(als_sw) (config)#spanning-tree forceversion 802.1w % указываем версию STP %
(als_sw) (config)#spanning-tree port mode all % включаем STP на всех портах %
(als_sw) (config)#exit

3.8.9.3. Hacmpoйка IGMP, Multicast forwarding

(als_sw)	configure
(als_sw)	config)#mcast_vfm 1 forward_registered % указываем для VLAN метод % % обработки Multicast, в данном случае multicast % % направляется только тем портам кто % % зарегистрированн в данной группе %
(als_sw)	config)#set igmp % включаем IGMP Snooping глобально%
(als_sw)	config)#set igmp interfacemode %включаем IGMP Snooping на интерфейсах%
(als sw)	config)#exit

3.8.9.4. Настройка IP ACL

Запрещаем все пакеты с IP назначения 172.16.0.12 на порту 0/23

3.8.9.5. Настройка МАС АСЬ

Запрещаем все пакеты с МАС источником 00:13:АА:45:71:34 на порту 0/23

3.8.9.6. Авторизация по RADIUS

Настройка авторизации telnet и SSH по Radius для пользователей коммутатора, при этом пароль для привилегированного режима (enable) проверяется локально и по умолчанию один для всех пользователей коммутатора. На RADIUS сервере должны быть указаны привилегии(service-type) пользователей.

```
(als_sw) #configure
(als_sw) (config)#aaa authentication login "defaultList" radius
             % указываем свитчу что login нужно авторищировать с помощью Radius
%
(als_sw) (config)#aaa authentication enable "enableList" enable
                           % указываем свитчу что пароль enable %
                           % определен глобально и он один для всех %
(als_sw) (config)#radius server host auth 172.16.67.39
                           % указание настроек Radius сервера %
(als_sw) (config)#radius server key auth 172.16.67.39
                           % указание настроек Radius сервера %
<далее вводится секретный ключ>
(als_sw) (config)#line telnet
(als_sw) (Config-telnet)# login authentication "defaultList"
                           % указвыем свитчу авторизировать доступ %
                           % по telnet с помощью defaultList %
```

97

(als_sw)	(Config-telnet)# exit
(als_sw)	(Config-ssh)#line ssh
(als_sw)	(Config-ssh)#login authentication "defaultList" % указвыем свитчу авторизировать доступ % % по telnet с помощью defaultList %
(als_sw)	(Config-ssh)#exit
(als_sw)	(config)#exit

3.8.9.7. QoS

Установка для входящего трафика с меткой VLAN Id 100, правила маркировки поля приоритета IP DSCP

(als_sw)	#configure % Переход в режим конфигурирования%
(als_sw)	(Config)#class-map match-all IPTV ipv4 % Создаем class map %
(als_sw)	(Config-classmap)#match vlan 100 % Указываем критерий классификации %
(als_sw)	(Config-classmap)#exit
(als_sw)	(Config)#policy-map std_policy in % Создаем новый policy-map %
(als_sw)	(Config-policy-map)#class IPTV % указываем соотвтествие между class-map и policy-map %
(als_sw)	(Config-policy-classmap)#mark ip-dscp cs7 % Устанавливаем поле приоритета IP DSCP %
(als_sw)	(Config-policy-classmap)#exit
(als_sw)	(Config)#exit
(als_sw)	(Config)# interface 0/10
(als_sw)	(Interface 0/10)#service-policy in IPTV_policy
%	» применяем политику для то интерфейса во входящем направлении
(als_sw)	(Interface 0/10)#exit
(als_sw)	(Config)#exit

ПРИЛОЖЕНИЕ 1

Назначение контактов разъема RJ-45

Общий вид разъема RJ-45 и розетки под него с указанием нумерации проводников приведены на рисунке ниже.

Расположение проводников для прямого кабеля:

RJ-45		N⁰	N⁰	№ RJ-45	
TX+	Бело-оранжевый	1	1	Бело-оранжевый	TX+
TX-	Оранжевый	2	2	Оранжевый	TX-
RX+	Бело-зеленый	3	3	Бело-зеленый	RX+
	Синий	4	4	Синий	
	Бело-синий	5	5	Бело-синий	
RX-	Зеленый	6	6	Зеленый	RX-
	Бело-коричневый	7	7	Бело-коричневый	
	Коричневый	8	8	Коричневый	

Расположение проводников для перекрестного кабеля:

RJ-45				N⁰	RJ-45		
TX+	Бело-оранжевый	1	\sim	1	Бело-оранжевый	TX+	
TX-	Оранжевый	2	$\neg \succ \frown$	2	Оранжевый	TX-	
RX+	Бело-зеленый	3	<u>~</u> ~	3	Бело-зеленый	RX+	
	Синий	4	$\neg X \sim$	4	Синий		
	Бело-синий	5	\rightarrow XX $-$	5	Бело-синий		
RX-	Зеленый	6	->>>	6	Зеленый	RX-	
	Бело-коричневый	7		7	Бело-коричневый		
	Коричневый	8		8	Коричневый		

ПРИЛОЖЕНИЕ 2

Назначение контактов разъема RS-232 (СОМ)

Общий вид разъема RS-232 с указанием нумерации проводников и их назначением приведен на рисунке ниже.

ПРИЛОЖЕНИЕ 3

Назначение контактов 96-контактного разъема для абонентских линий платы ADSL32

Полярность в линии ADSL неважна, поэтому контакты «ADSL A» и «ADSL B» в паре равнозначны.

ПРИЛОЖЕНИЕ 4

Назначение контактов 96-контактного разъема для абонентских линий платы VDSL-24

Полярность в линии VDSL неважна, поэтому контакты «VDSL A» и «VDSL B» в паре равнозначны.

ПРИЛОЖЕНИЕ 5

Назначение контактов 96-контактного разъема для абонентских линий платы АЛС-24200

Распиновка 96-контактных разъемов плат SFP-8. При обозначении контактов приняты следующие обозначение : [№ порта]_TDN[№ пары], [№ порта]_TDP[№ пары]. То есть надпись «9_TDN1» обозначает отрицательный «конец» 1-ой пары 9-го порта, а «4_TDP3» - положительный «конец» 3-ой пары 4-го порта. Соответственно, каждому порту принадлежит четыре пары.

Назначение контактов плат SFP-8 при использовании с АЛС-24200														
		«A4»					«АЗ»					«A2»		
C1	24_TDP3	B1	A1	24_TDP2	C1	16_TDP3	B1	A1	16_TDP2	C1	8_TDP3	B1	A1	8_TDP2
C2	24_TDN3	B2	A2	24_TDN2	C2	16_TDN3	B2	A2	16_TDN2	C2	8_TDN3	B2	A2	8_TDN2
C3	24_TDP1	B3	A3	24_TDP0	C3	16_TDP1	B3	- A3	16_TDP0	C3	8_TDP1	B3	A3	8_TDP0
C4	24_TDN1	84	- A4	24_TDN0	C4	16_TDN1	84	A4	16_TDN0	C4	8_TDN1	84	A4	8_TDN0
C5	23_TDP3	85	Aδ	23_TDP2	C5	15_TDP3	85	Aδ	15_TDP2	C5	7_TDP3	B5	Aδ	7_TDP2
C6	23_TDN3	B6	A6	23_TDN2	C6	15_TDN3	B6	A6	15_TDN2	C6	7_TDN3	B6	A6	7_TDN2
C7	23_TDP1	87	A7	23_TDP0	C7	15_TDP1	87	A7	15_TDP0	C7	7_TDP1	87	A7	7_TDP0
C8	23_TDN1	B8	A8	23_TDN0	C8	15_TDN1	B8	- A8	15_TDN0	C8	7_TDN1	B8	A8	7_TDN0
C9	22_TDP3	B9	A9	22_TDP2	C9	14_TDP3	B9	A9	14_TDP2	C9	6_TDP3	B9	A9	6_TDP2
C10	22_TDN3	B10	A10	22_TDN2	C10	14_TDN3	B10	A10	14_TDN2	C10	6_TDN3	B10	A10	6_TDN2
C11	22_TDP1	B11	A11	22_TDP0	C11	14_TDP1	B11	A11	14_TDP0	C11	6_TDP1	B11	A11	6_TDP0
C12	22_TDN1	B12	A12	22_TDN0	C12	14_TDN1	B12	A12	14_TDN0	C12	6_TDN1	B12	A12	6_TDN0
C13	21_TDP3	B13	A13	21_TDP2	C13	13_TDP3	B13	A13	13_TDP2	C13	5_TDP3	B13	A13	5_TDP2
C14	21_TDN3	B14	A14	21_TDN2	C14	13_TDN3	B14	A14	13_TDN2	C14	5_TDN3	B14	A14	5_TDN2
C15	21_TDP1	B15	A15	21_TDP0	C15	13_TDP1	B15	A15	13_TDP0	C15	5_TDP1	B15	A15	5_TDP0
C16	21_TDN1	B16	A16	21_TDN0	C16	13_TDN1	B16	A16	13_TDN0	C16	5_TDN1	B16	A16	5_TDN0
C17	20_TDP3	B17	A17	20_TDP2	C17	12_TDP3	B17	A17	12_TDP2	C17	4_TDP3	B17	A17	4_TDP2
C18	20_TDN3	B18	A18	20_TDN2	C18	12_TDN3	B18	A18	12_TDN2	C18	4_TDN3	B18	A18	4_TDN2
C19	20_TDP1	B19	A19	20_TDP0	C19	12_TDP1	B19	A19	12_TDP0	C19	4_TDP1	B19	A19	4_TDP0
C20	20_TDN1	B20	A20	20_TDN0	C20	12_TDN1	B20	A20	12_TDN0	C20	4_TDN1	B20	A20	4_TDN0
C21	19_TDP3	B21	A21	19_TDP2	C21	11_TDP3	B21	A21	11_TDP2	C21	3_TDP3	B21	A21	3_TDP2
C22	19_TDN3	B22	A22	19_TDN2	C22	11_TDN3	B22	A22	11_TDN2	C22	3_TDN3	B22	A22	3_TDN2
C23	19_TDP1	B23	A23	19_TDP0	C23	11_TDP1	B23	A23	11_TDP0	C23	3_TDP1	B23	A23	3_TDP0
C24	19_TDN1	B24	A24	19_TDN0	C24	11_TDN1	B24	A24	11_TDN0	C24	3_TDN1	B24	A24	3_TDN0
C25	18_TDP3	825	A25	18_TDP2	C25	10_TDP3	B25	A25	10_TDP2	C25	2_TDP3	B25	A25	2_TDP2
C26	18_TDN3	B26	A26	18_TDN2	C26	10_TDN3	B26	A26	10_TDN2	C26	2_TDN3	B26	A26	2_TDN2
C27	18_TDP1	B27	A27	18_TDP0	C27	10_TDP1	B27	A27	10_TDP0	C27	2_TDP1	B27	A27	2_TDP0
C28	18_TDN1	B28	A28	18_TDN0	C28	10_TDN1	B28	A28	10_TDN0	C28	2_TDN1	B28	A28	2_TDN0
C29	17_TDP3	B29	A29	17_TDP2	C29	9_TDP3	B29	A29	9_TDP2	C29	1_TDP3	B29	A29	1_TDP2
C30	17_TDN3	B30	A30	17_TDN2	C30	9_TDN3	B30	A30	9_TDN2	C30	1_TDN3	B30	A30	1_TDN2
C31	17_TDP1	B31	A31	17_TDP0	C31	9_TDP1	B31	A31	9_TDP0	C31	1_TDP1	B31	A31	1_TDP0
C32	17_TDN1	B32	A32	17_TDN0	C32	9_TDN1	B32	A32	9_TDN0	C32	1_TDN1	B32	A32	1_TDN0

Рисунок 33

ПРИЛОЖЕНИЕ 6

Назначение контактов нижнего 96-контактного разъема плат SHDSL-16EFM и ПВДП

	А	В	С
1	SHDSL 1	+60V	SHDSL 1
2		+60V	
3	SHDSL 2		SHDSL 2
4		-60V	
5	SHDSL 3	-60V	SHDSL 3
6			
7	SHDSL 4		SHDSL 4
8			
9	SHDSL 5		SHDSL 5
10			
11	SHDSL 6		SHDSL 6
12		Корпус	
13	SHDSL 7	Корпус	SHDSL 7
14			
15	SHDSL 8		SHDSL 8
16			
17	SHDSL 9		SHDSL 9
18			
19	SHDSL 10		SHDSL 10
20			
21	SHDSL 11		SHDSL 11
22			
23	SHDSL 12		SHDSL 12
24			
25	SHDSL 13		SHDSL 13
26			
27	SHDSL 14		SHDSL 14
28			
29	SHDSL 15		SHDSL 15
30		Земля	
31	SHDSL 16	Земля	SHDSL 16
32		Земля	
		SHDSL24	

Полярность в линии SHDSL неважна, поэтому контакты *«SHDSL A»* и *«SHDSL C»* в паре равнозначны.

ПРИЛОЖЕНИЕ 7

Назначение контактов 96-контактного разъема платы АЛС-

АУ

	А	В	С
1			
2	AK1+	AK1+	AK1+
3			
4	AK1-	AK1-	AK1-
5			
6	AK2+	AK2+	AK2+
7	AK2	AKO	AK2
8	AKZ-	AKZ-	AKZ-
9 10			
10 11			
11	ET_RXB	ET_RXB	ET_RXB
13			
14	ET_RX+_B	ET_RX+_B	ET_RX+_B
15			
16	ET_TXB	ET_TXB	ET_TXB
17			
10 10			
20	ET_RXA	ET_RXA	ET_RXA
21			
22	ET_RX+_A	ET_RX+_A	ET_RX+_A
23			
24	ET_TXA	ET_TXA	ET_TXA
25			
26	ET_TX+_A	ET_TX+_A	ET_TX+_A
27			
28			
29			
3U 21			STUSL_U
31 32	SHDSL_1	SHDSL_1	SHDSL_1

Контакты с одинаковыми названиями параллельны.

SHDSL_0 и SHDSL_1 образуют SHDSL-пару, полярность в линии SHDSL неважна.

ПРИЛОЖЕНИЕ 8

Кроссировка плинтов АЛС-АУ

ПРИЛОЖЕНИЕ 9

Цоколевка верхнего разъема плат MKS-Цоколевка нижнего разъема плат IP MKS-IP С В Обозначения Обозначения А В 1 + 2 1 3 1 2 2 AGL_YES 4 5 6 3 3 7 0 CORPUS 8 9 4 SYNC_SHDSL 4 DNAK 2 20 19 0A 5 0A DNAK 5 18 17 16 DSAK 6 DSAK 1B0B0B6 18 17 16 FS 7 1A 7 INPM 1A 18 17 16 8 2A 1B OUTPM 8 19 OUTM 9 2B 2A 2B INTM 9 19 F4MG 10 3A 3A VS_IN 10 20 ET_RD-3 11 3B 3B 11 20 ET_RD-RDATA 5A 12 4B 2 3 4A 12 13 5B 4A 4B13 UPR_PW 14 5A 5B 6A 14 REZ 7A 15 6A 6B AIPSM 6B 15 7A 16 16 7B 7B DATA 17 0 0 0 17 CLK 18 1 1 18 19 COD 19 2 2 2 20 3 3 20 21 4 4 4 21 22 22 5 5 23 23 IN OUT 6 6 6 IN 24 24 OUT 25 8 8 8 25 OUT IN IN 26 9 9 26 OUT 9 27 10 10 10 27 28 28 11 11 11 29 12 12 12 29 IN OUT IN 30 13 13 13 30 OUT 4 5 31 14 14 14 31 32 15 15 32 mks mks Рисунок 35 Рисунок 36

Назначение контактов 96-контактного разъема платы МКС-IP

- «VS_IN-», «VS_IN+» вход последовательного канала стативной сигнализации.
- «SS0», «SS1», «SS2», «SS3» выходные сигналы стативной сигнализации.
- «+60V», «-60V» вход питающего напряжения (диапазон 36-72В).
- «IN_SYNC_SHDSL» сигнал синхронизации с модуля SHDSL
- «OUTM_0A», «OUTM_0B» выход 0 цифрового потока.
- «INPM_0А», «INPM_0В» вход 0 цифрового потока.
- «OUTM_1A», «OUTM_1B» выход 1 цифрового потока.
- «INPM_1А», «INPM_1В» вход 1 цифрового потока.
- «ОUTM_2А», «ОUTM_2В» выход 2 цифрового потока.
- «INPM_2A», «INPM_2B» вход 2 цифрового потока.
- «ОUTM_3А», «ОUTM_3В» выход 3 цифрового потока.
- «INPM_3А», «INPM_3В» вход 3 цифрового потока.
- «ОUTM_4А», «ОUTM_4В» выход 4 цифрового потока.
- «INPM_4A», «INPM_4B» вход 4 цифрового потока.
- «ОUTM_5А», «ОUTM_5В» выход 5 цифрового потока.
- «INPM_5A», «INPM_5B» вход 5 цифрового потока.
- «ОUTM_6А», «ОUTM_6В» выход 6 цифрового потока.
- «INPM_6А», «INPM_6В» вход 6 цифрового потока.
- «OUTM_7А», «OUTM_7В» выход 7 цифрового потока.
- «INPM_7А», «INPM_7В» вход 7 цифрового потока.
- «CORPUS» корпусная земля.
- «DNAK0» -- «DNAK20» -- выходные данные TDM интерфейсов.
- «DSAK0» -- «DSAK20» -- входные данные TDM интерфейсов.
- «FS0» -- «FS20» -- синхросигнал TDM интерфейсов.
- «F4MG1» -- «F4MG9» -- стробирующая тактовая частота TDM интерфейса.
- «BLOCK_IP+», «BLOCK_IP-» блокировка питания при питании модуля от аккумуляторов.
- «2ET_RD+», «2ET_RD-», «2_ET_TD+», «2_ET_TD-» 2-й Ethernet порт 10/100 Мбит/с.
- «ЗЕТ_RD+», «ЗЕТ_RD-», «З_ЕТ_TD+», «З_ЕТ_TD-» З-й Ethernet порт 10/100 Мбит/с.
- «ZAGL_YES» сигнал детектирования наличия платы резервирования модулей.
- «DATA_IN», «DATA_OUT», «CLK_IN», « CLK_OUT», «SET_IN», «SET_OUT» сигнал данных, кадровый и тактовой частоты для межблочного обмена системы резервирования.
- «RDATA_IN», «RDATA_OUT» сигналы подстройки частоты между модулями.
- «IN_UPR_PW », «OUT_UPR_PW » сигналы управления питания на резервном модуле.
- «REZ_IN», «REZ_OUT» сигналы схемы генерации сигнала.
- «AIPSM_IN», «AIPSM_OUT» сигналы состояния источника питания.
- «COD5», «COD4», «COD3», «COD2», «COD1» кодировка места в кроссе.
- «GND» цифровая земля.

ПРИЛОЖЕНИЕ 10

Назначение контактов сплиттера, вставляемого в плинт

ПРИЛОЖЕНИЕ 11

Типовая схема использования сплиттеров

СОКРАЩЕНИЯ

Сокращение	Расшифровка						
MSAN-ALS	Мультисервисный узел доступа (MultiService Access Network)						
ADSL	Asymmetric Digital Subscriber Line (асимметричная цифровая абонентская линия)						
ADSL-32	Плата доступа по технологии ADSL / ADSL2 / ADSL2+						
AG	Access Gateway (шлюз доступа)						
CLI	Command Line Interface (интерфейс командной строки)						
DSCP	Differentiated Services Code Point (точка кода дифференцированных услуг)						
DSLAM	Digital Subscriber Line Access Multiplexer (мультиплексор доступа цифровой абонентской линии)						
DSP	Digital Sound Processor (цифровая обработка сигналов)						
ISDN	Integrated Services Digital Network (цифровая сеть с интеграцией служб)						
ISUP	ISDN User Part (прикладная часть ISDN)						
MEGACO	Media Gateway Control Protocol						
MG	Media Gateway (медиа шлюз)						
MGC	Media Gateway Controller (контроллер медиа шлюзов)						
MKC-IP	Модуль коммутационный — системный для работы по IP сетям						
MSPU	Модуль системы передач, универсальный						
MSPU OC ADSL	ADSL на базе платформы MSPU						
QoS	Quality of Service (качество обслуживания)						
SFP-8	Плата с 8ю SFP окончаниями						
SG	Signaling Gateway (шлюз сигнализации)						
SHDSL-16EFM	Плата доступа по технологии SHDSL-EFM						
SHDSL-16EFM	Плата доступа по технологии SHDSL-EFM						
U	Unit (Стоечный юнит = 44,45 мм (или 1,75 дюйма))						
VDSL-24	Плата доступа по технологии VDSL2						
VLAN	Virtual Local Area Network (виртуальная локальная компьютерная сеть)						
AK	Абонентский комплект						
AK32-M	Плата абонентских комплектов						
АКБ	Аккумуляторная батарея						
АЛ	Аналоговая линия						
АЛС-24100	Ethernet коммутатор уровня доступа с поддержкой L3						
АЛС-24200	Магистральный ethernet коммутатор с поддержкой L3						
АЛС-24300	Ethernet коммутатор уровня распределения с поддержкой L3						
АЛС-24400L	Ethernet коммутатор уровня доступа с поддержкой L3 и увеличенной						

Сокращение	Расшифровка								
	дальностью работы по кабелю.								
АЛС-АУ	Абонентское устройство								
АОН	Автоматический определитель номера								
ATC	Автоматическая телефонная станция								
БДП	Блок дистанционного питания								
БУН-21	Блок универсальный								
БУН-21	Блок универсальный								
БУН-21/6	Блок универсальный на 21 место - 6"								
БЭП	Блок электропитания								
BCK	Способ сигнализации по выделенным сигнальным каналам								
ГВС	Генератор вызывного сигнала								
ГВС-ИПАЛ	Плата генератора вызывного сигнала с поддержкой измерений абонентских аналоговых линий								
ДВО	Дополнительные виды обслуживания								
E1	Поток ИКМ-30								
ЗИП	Запасные части и принадлежности								
ИДП	Источник дистанционного питания								
ИКМ	Импульсно-кодовая модуляция								
ИКМ-15	Уплотненный цифровой тракт на 15 ТЧ каналов								
ИКМ-30	Уплотненный цифровой тракт на 30 ТЧ каналов								
ИП СП	Источник питания системы передач								
KHC	Конвертер напряжения сети								
КПВ	Контроль посылки вызова (сигнал)								
MK	Микроконтроллер								
MKC-IP	Модуль коммутационный — системный для работы по IP сетям								
MCK	Микропроцессорная система контроля								
ОЗУ	Оперативное запоминающее устройство								
OC	Операционная система								
ПВДП	Плата ввода дистанционного питания								
ПК	Персональный компьютер								
ПО	Программное обеспечение								
СЛ	Соединительная линия								
СОРМ	Система оперативно-розыскных мероприятий								
TK-32M	Плата 32х телефонных комплектов, модернизированная								
ТУ	Технические условия								
ТфоП	Телефонная сеть общего пользования								

Сокращение	Расшифровка
ТЧ	Канал тональной частоты
ТЭЗ	Типовой элемент замены
УГМ	Устройство гибкого мультиплексирования
УГМ-Е	Устройство гибкого мультиплексирования, вариант для ШРО-512
УИ	Устройство интерфейсное
УИ-ШРО	Устройство интерфейсное ШРО
УМП	Уплотнитель модемных потоков
УПАТС	Учрежденческая производственная автоматическая телефонная станция
ФАПЧ	Фазовая автоподстройка частоты
ЦК	Центральный коммутатор
ЧНН	Час наибольшей нагрузки
шпд	Широкополосный доступ
ШРО	Шкаф распределительный оптический
ШРО-512	Шкаф распределительный оптический 512
ЭК	Эхокомпенсация

Лист регистрации изменений											
	Н	Іомера листов	(страниц)		Всего листов (страниц) в докум						
Изм	Измененных	Замененных	Новых	Аннулиро- ванных		№ документа	Входящий № сопроводитель ного докум и дата	Подп	Дата		