ООО «Компания «АЛС и ТЕК»

УТВЕРЖДЕН 643.ДРНК.501591-01 32 01-ЛУ

ADSL2+ IP DSLAM

Руководство системного программиста

643.ДРНК.501591-01 32 01

(CD-R)

Листов 48

СОДЕРЖАНИЕ

Введение	<u>4</u>
1.Общие сведения о системе	<u>5</u>
2.Структура системы	<u>6</u>
<u>З.Настройка системы</u>	<u>8</u>
<u>3.1.Подключение к устройству</u>	<u>8</u>
3.1.1.Подключение по СОМ-порту	8
<u>3.1.2.Подключение по протоколу Telnet</u>	9
<u>3.1.3.Подключение по протоколу HTTP (Web-конфигуратор)</u>	11
3.2.Начальная настройка.	13
3.2.1.Перед началом конфигурирования	13
3.2.2.Заводская конфигурация.	13
3.2.3.Назначение IP-адреса.	14
3.2.3.1.Конфигурация без использования VLAN	14
3.2.3.2.Конфигурация с использованием VLAN	15
3.2.4.Назначение шлюза по умолчанию	16
3.2.5.Смена режима работы портов Uplink	16
3.2.6.Использование каскадирования портов Uplink	
3.2.7.Резервирование портов Uplink	
3.2.8.Настройка портов ADSL с использованием профилей	20
3.2.9.Запуск службы Web-конфигуратора	
3.2.10. Service SNMP	
3.2.10.1.Настройка протокола SNMP	
3.2.11.Обновление ПО	
3.3.Пример настройки соединения от ADSL порта к UPLINK порту	
3.3.1.Последовательность действий при настройке	
<u></u>	
3.3.3.Создание и активация интерфейса DSLAM_BRIDGE	
3.3.4. Активация интерфейса АТМ.	
3.3.5.Созлание, связывание и активация интерфейса ААЦ5	
3.3.6. Определение типа интерфейса инкапсудяции, его связывание и активация	31
3.3.7. Связывание и активация порта UPLINK	32
338 Активация порта ADSL	33
3.4. Проверка системы	33
3 4 1 Внешняя инликация состояния устройства	35
342 Просмотр текущей конфигурации и статистики	35
343 Отображение состояния линий ADSL	36
344 Измерение параметров линий ADSL	<u></u>
345 Свеления о работе ПО	<u></u>
<u>о.н.о. сводения о работе поли</u>	<u></u> 40 41
Назначение контактов 96-контактного разъема для абонентских линий платы ADSL2+	<u></u> <u>4</u> 1
Пазначение ?	
H22μ2μαμα κομτακτος RL 45	<u></u> /17
	_+ ۸۸
H_{22} H22 H22 H22 H22 H22 H22 H22 H22 H22 H2	<u></u> 11
	44 ۲۲
	<u>40</u> ۲۲
	40 مر
דאודטאלטוויד איז ארא איז איז איז איז איז איז איז איז איז אי	<u>40.</u> ۱۲
типорая састиа использования сплитеров	40

Сокраш	цения4	.7
<u> </u>		_

введение

Настоящее руководство содержит сведения, необходимые для обеспечения действий системного программиста при установке и настройке устройства «ADSL2+ IP DSLAM», а также при работе с ним.

В документе содержатся общие сведения о системе, описан порядок получения доступа к ней, настройки системы, а также ее диагностики.

1. ОБЩИЕ СВЕДЕНИЯ О СИСТЕМЕ

Мультиплексор абонентского доступа ADSL2+ IP DSLAM устанавливается на стороне поставщика услуг широкополосного доступа в сеть. ADSL2+ IP DSLAM предоставляет возможность подключать абонентов по меди с использованием существующих телефонных линий связи. В зависимости от комплектации устройство может иметь 8, 16 или 32 ADSL-порта, которые обеспечивают скорость нисходящего потока до 24 Мбит/с и скорость восходящего потока — до 2800 Кбит/с (для Annex M). Два порта Gigabit/Fast Ethernet обеспечивают доступ (Uplink) к сети провайдера по медной паре (10/100/1000Base-TX). Устройство удовлетворяет стандартам ADSL/ADSL2/ADSL2+ и обеспечивает совместимость с абонентским оборудованием различных производителей. Система управления устройства имеет текстовый командный интерфейс (CLI), доступный через порт RS-232 и по протоколам Telnet/SSH и графический Web-интерфейс.

Устройство включает в себя схему внешнего отключения питания, которая позволяет подачей извне постоянного сигнала блокировки выключить источник питания платы. Внешний вход данной схемы выводится на задний 96-контактный разъем платы. Он подсоединяется к специальному выходу управляющего устройства (такого как, например, УИ-ШРО), которое отслеживает состояние сети питания. При пропадании питания данное управляющее устройство вырабатывает постоянный сигнал блокировки, который выключает источник питания на плате ADSL2+ IP DSLAM.

Помещение, в котором устанавливается ADSL2+ IP DSLAM должно быть чистым и хорошо вентилируемым. Для работы устройства необходим блок БУН-21/6, который устанавливается в стандартную 19" стойку и занимает по высоте 6U. Устройство работает от источника питания с напряжением 36 - 72 В.

2. СТРУКТУРА СИСТЕМЫ

Блок БУН-21/6 устанавливается в стандартную 19" стойку и занимает по высоте место 6U. Габаритные размеры блока БУН-21/6 - 270*440*210.

ADSL-линии выводятся на задний разъем кросс-платы блока БУН-21/6. Назначение контактов 96-контактного разъема и его схема приведены в приложении.

Сигналы схемы внешнего отключения питания также выводятся на задний разъем кросс-платы. Расположение контактов в 96-контактном разъеме приведено в приложении. Контакт «BLG» подключается к общему (земляному) проводу блокировки питания. Контакт «BL» к проводу блокировки питания.

Провода с 96-контактного разъема обычно кроссируются в плинт. Для того, чтобы к конечному абоненту предоставлялись услуги ТфоП и широкополосного доступа по одной паре проводов, используется сплиттер, который смешивает сигнал, идущий с ADSL комплекта с сигналом, идущим от абонентского комплекта.

Назначение контактов стандартного сплиттера описано в приложении. Типовая схема использования сплиттеров изображена в приложении.

После установки в блок, при условии, что к нему подведено питание, ADSL2+ IP DSLAM можно включить, переведя тумблер питания в верхнее положение. При этом начнется загрузка ПО устройства, о чем будет свидетельствовать попеременное моргание красного и зеленого светодиодов «ПИТ».

Перед извлечением ADSL2+ IP DSLAM необходимо убедиться, что питание платы выключено (тумблер питания переведен в нижнее положение).

Для того чтобы извлечь устройство из блока, нужно воспользоваться «экстракторами»,

расположенными сверху и снизу его лицевой панели. Нажав на нижний экстрактор изнутри в направлении вниз и на верхний экстрактор изнутри в направлении вверх, можно извлечь блок ADSL из разъема кросс-платы БУН-21/6.

Внимание!

При работе устройства некоторые его элементы могут нагреваться. Поэтому, во время извлечения устройства из корзины после его длительной работы, следует быть осторожным во избежание получения ожогов.

3. НАСТРОЙКА СИСТЕМЫ

3.1. Подключение к устройству

3.1.1. Подключение по СОМ-порту

Этот способ подключения лучше всего применять для первичной настройки ADSL2+ IP DSLAM. Для подключения нужно соединить последовательный порт рабочей станции, с которой будет осуществляться конфигурирование, с последовательным портом устройства при помощи консольного кабеля, имеющего соответствующие разъемы на каждом конце.

Начальные установки последовательного порта ADSL2+ IP DSLAM следующие:

- скорость последовательного порта (Baud Rate): 115200;
- биты данных (бит) (Data Bits): 8;
- четность (Parity Bits): Нет (None);
- стоповый бит (Stop Bit): 1;
- управление потоком (Flow Control): Нет (None).

Далее необходимо сконфигурировать терминал рабочей станции для использования этих установок перед входом в систему ADSL2+ IP DSLAM. Ниже приведен пример настройки терминала в Windows (программа Hyper Terminal в Windows 95 / 98 / 2000 / XP):

- **1.** Выберите из меню «Пуск»: Программы → Стандартные (Accessories) → Связь (Communication) → Hyper Terminal.
- **2.** Установите «Имя» (Name) и «Значок» (Icon) в Описании подключения (Connection Description).
- **3.** Выберите в поле *«Connect To»* СОМ-порт, через который соединены ПК и ADSL2+ IP DSLAM.
- **4.** Установите указанные выше настройки последовательного порта в диалоге *«Свойства COMx»* (*COMx Properties*).
- 5. Нажмите кнопку «ОК».

Настройки СОМ-порта	
Свойства: СОМ1	×
Параметры порта	
<u>С</u> корость (бит/с): 115200 💌	
<u>ь</u> иты данных: 8	
<u>Ч</u> етность: Нет	
Стоповые биты: 1	
<u>У</u> правление потоком: Нет	
Восстановить умолчания	
Рисунок 2	

Если соединение прошло успешно, на экране терминала отобразится приглашение к вводу имени пользователя (login) и пароля (password). Имя пользователя по умолчанию superuser, пароль - 123456. При желании пароль можно изменить после входа в систему.

Диалог входа в систему
ADSL32 ready !!!
als login: superuser Password:
als\$> <mark> </mark>
Ρμονμοκ 3
I UCYNON S

После входа в систему отобразится приглашение командной строки CLI.

3.1.2. Подключение по протоколу Telnet

Подключение этим способом удобнее предыдущего, поскольку при этом не требуется

находиться около устройства во время конфигурирования из-за ограниченной длины кабеля для COM-порта.

Для подключения к блоку при помощи протокола Telnet необходимо, чтобы ПК был связан с любым Ethernet-портом ADSL2+ IP DSLAM при помощи сетевого кабеля (UTP категории 5) или через коммутатор Ethernet.

Важно! Режим порта ПК должен быть GE (Gigabit Ethernet). Если это невозможно, то необходимо подключаться по СОМ порту.

Также нужно знать IP-адрес устройства. Если заводская конфигурация не была изменена, ADSL2+ IP DSLAM имеет адрес **172.16.1.10** с маской подсети **255.255.0.0**. В противном случае IP-адрес нужно определить, используя подключение к блоку при помощи COM-порта.

После определения IP-адреса устройства необходимо проверить настройки сети на ПК с которого будет осуществляться конфигурирование. Следует помнить, что связь между рабочей станцией и ADSL2+ IP DSLAM может быть установлена только в том случае, когда они имеют соответствующие IP-адреса из одной подсети.

Если на устройстве используется заводская конфигурация, то сетевой карте ПК может быть присвоен любой адрес, начиная с 172.16.1.1 и заканчивая 172.16.1.254, за исключением адреса самого ADSL2+ IP DSLAM (172.16.1.10). Пример настройки сетевой карты в Windows показан на рисунке ниже:

Установка IP-адреса для ПК	
Свойства: Протокол Интернета (Т	CP/IP) <u>? ×</u>
Общие	
Параметры IP могут назначаться а поддерживает эту возможность. В IP можно получить у сетевого адми	втоматически, если сеть противном случае параметры нистратора.
О Получить IP-адрес автоматиче	ески
— • <u>И</u> спользовать следующий IP-	адрес:
<u>I</u> P-адрес:	172 . 16 . 1 . 66
<u>М</u> аска подсети:	255.255.0.0
Основной <u>ш</u> люз:	· · ·
С Получить адрес DNS-сервера	автоматически
— • И <u>с</u> пользовать следующие адр	реса DNS-серверов:
Предпочитаемый DNS-сервер:	· · ·
<u>Альтернативный DNS-сервер:</u>	· · ·
	Дополнительно
ОК Отмена	
Рисунок 4	

Проверить настройки IP-протокола и доступность устройства можно с помощью команды ping. Для этого нужно выполнить следующие действия (для OC Windows и блока с загруженной заводской конфигурацией):

- **1.** Выберите из меню «Пуск»: Программы → Стандартные (Accessories) → Командная строка.
- **2.** В открывшемся окне введите команду ping **172.16.1.10** и нажмите клавишу Enter.
- **3.** Если на экране появилась надпись «Превышен интервал ожидания для запроса», то это означает, что ADSL2+ IP DSLAM недоступен. В этом случае необходимо проверить настройки IP-протокола на ПК и подключение ПК к данному устройству.
- **4.** В случаю появления ответов от ADSL2+ IP DSLAM тестирование настроек IP и доступности блока можно считать успешным.

Использование команды ping	
C:\WINNT\system32\cmd.exe	
Microsoft Windows 2000 [Версия 5.00.2195] (С) Корпорация Майкрософт, 1985-2000.	
C:\>ping 172.16.1.10	
Обмен пакетами с 172.16.1.10 по 32 байт:	
Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128 Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128 Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128 Ответ от 172.16.1.10: число байт=32 время<10мс TTL=128	
Статистика Ping для 172.16.1.10: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь), Приблизительное время передачи и приема: наименьшее = Омс, наибольшее = Омс, среднее = Омс	•
Ρυςνμοκ 5	

Подключиться к ADSL2+ IP DSLAM по сети можно с помощью утилиты telnet. Для этого нужно перейти к пункту меню Пуск (Start) -> Выполнить (Run). В качестве параметра программе нужно передать IP-адрес устройства. Например:

telnet 172.16.1.10

После подключения на терминале отобразится диалог входа в систему, где нужно ввести имя пользователя и пароль.

3.1.3. Подключение по протоколу НТТР (Web-конфигуратор)

Сначала нужно убедиться, что выполняются следующие требования:

• ПК может установить физическое соединение с ADSL2+ IP DSLAM. Для этого необходимо, чтобы компьютер и устройство имели соответствующие IP-адреса из одной подсети.

- IP-адрес ADSL2+ IP DSLAM по умолчанию (172.16.1.10) не используется другим сетевым устройством. В противном случае потребуется отключить его от сети, прежде чем вы сможете задать новый IP-адрес для ADSL2+ IP DSLAM.
- Для того чтобы иметь возможность управления ADSL2+ IP DSLAM при помощи Webконфигуратора, необходимо, чтобы на устройстве был запущен специальный сервис -Web. По умолчанию в заводской конфигурации этот сервис отключен. Запустить службу Web-конфигуратора можно с помощью следующей команды:

als\$> service web no shutdown

Для того чтобы соединиться с ADSL2+ IP DSLAM необходимо выполнить следующие шаги:

- **1.** Запустите Web-браузер.
- **2.** В адресной строке введите "http://" и текущий IP-адрес ADSL2+ IP DSLAM. Например, при использовании IP-адреса по умолчанию:
- 3. http://172.16.1.10
- 4. Должна отобразиться страница входа в систему.

Вход в	систему
Название системы:	als
Местоположение:	TelephoneStation
ІР-адрес:	172.16.1.21
МАС-адрес:	00:13:AA:00:11:A
Имя пользователя	
Пароль	
E	ход

- 5. Введите имя пользователя и пароль. Значения по умолчанию:
- 6. Имя пользователя: superuser
- 7. Пароль: 123456
- 8. Если аутентификация прошла успешно, произойдет переход к странице «ADSLмонитор».

Примечание.

Над полем «Имя пользователя» может отображается сообщение «Вход в систему уже осуществлен». Оно означает, что в данный момент кто-то уже работает в Web-

конфигураторе и, возможно, производит настройку. Поэтому во избежание одновременного изменения одних и тех же параметров хорошей идеей будет подождать, пока пользователь выйдет из системы, хотя это и не обязательно.

3.2. Начальная настройка

3.2.1. Перед началом конфигурирования

Перед тем как перейти к настройке ADSL2+ IP DSLAM, необходимо определиться со следующими параметрами:

- 1. Требуется ли использование VLAN?
- **2.** В случае, если будет использоваться VLAN необходимо знать, какой VLAN ID будет использоваться для управления платы, а какой (какие) для абонентского доступа.
- **3.** Какой IP адрес, маска подсети и, если требуется, шлюз по-умолчанию будет использоваться для управления платой.
- **4.** Какой (какие) VPI/VCI будут использоваться для каждого VLAN ID абонентского доступа.

3.2.2. Заводская конфигурация

ADSL2+ IP DSLAM поставляется с некоторой начальной конфигурацией, называемой заводской (factory-config). Кроме того, на устройстве существуют дополнительные три предопределенных конфигурации:

- os_adsl_v2-factory1.conf без использования VLAN;
- os_adsl_v2-factory2.conf с использованием VLAN для абонентского трафика и отдельного VLAN для управления;
- os_adsl_v2-factory3.conf с использованием разных VLAN для интернет, IPTV, VoIP и управления.

Если после изменения текущей конфигурации (running-config) и замены ей стартовой конфигурации, оказалось, что устройство работает не так, как ожидалось, всегда существует возможность вернуться к заводской конфигурации. Для этого следует выполнить команду

copy factory-config startup-config

и перезагрузить устройство командой

reboot

Для возвращения к первоначальным настройкам вместо заводской можно использовать

одну из перечисленных конфигураций. Они, так же как и любые пользовательские конфигурации, находятся в области памяти nvram.

3.2.3. Назначение ІР-адреса

3.2.3.1. Конфигурация без использования VLAN

Как уже упоминалось, в заводской конфигурации ADSL2+ IP DSLAM присвоен адрес 172.16.1.10 с маской подсети 255.255.0.0. Для его изменения нужно использовать подключение к блоку при помощи COM-порта.

После успешного входа в систему необходимо выполнить следующие действия:

Таблица 1

Команда	Описание
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор)
als(cntx-ip)[router]# ifconfig hbr0 172.16.1.21 netmask 255.255.0.0 up	Назначение адреса 172.16.1.21 с маской подсети 255.255.0.0 для интерфейса hbro с последующим включением этого интерфейса
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую, чтобы при следующем запуске устройство использовало новый установленный IP-адрес

Последовательность действий для изменения ІР-адреса устройства

При создании интерфейса dslam_bridge br0 автоматически создается «хост-интерфейс» (hbr0), обеспечивающий возможность подключения к устройству и его управления. Задача хост-интерфейса - выбирать из всех приходящих на мост пакетов только те пакеты, которые предназначены именно данному хосту (процессору), а не для пересылки мостом с одного порта на другой. Такое разделение непосредственно моста и его управляющего интерфейса позволяет, отключив хост-интерфейс (т.е. отключив управление), оставить поток пакетов на его нижнем уровне.

Такие интерфейсы автоматически порождаются всеми Ethernet-совместимыми интерфейсами. Их имена отличаются от имен порождающих интерфейсов буквой «h» в начале (от слова «host»). Таким образом, хост-интерфейс для порта uplink0 будет иметь название huplink0, а для интерфейса еоа0 — heoa0.

Кроме этого, Uplink-порты и интерфейсы EoA имеют одинаковые команды управления взаимодействия с мостом со следующим синтаксисом:

[no] listen [bridge]

Если у порта или интерфейса в настройках установлено «no listen» то он не будет перенаправлять мосту, к которому он подключен, выбранные для устройства пакеты. Наоборот, если установлено «listen bridge» то интерфейс или порт будет отправлять пакеты на мост и получать их с него.

Таким образом, для того чтобы отключить управление со стороны какого-либо порта, необходимо в его конфигурации указать «no listen» и не назначать IP-адрес на его хостинтерфейс.

3.2.3.2. Конфигурация с использованием VLAN

В том случае, если для управлением ADSL2+ IP DSLAM планируется использовать отдельный VLAN, необходимо настроить управляющий интерфейс так, чтобы он имел возможность принимать пакеты, содержащие метку (тег) данного VLAN.

Для того чтобы настроить управление с помощью интерфейса hbro по управляющему VLAN с меткой 1000, нужно выполнить следующие команды :

Таблица 2

Команда	Описание
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор)
als(cntx-ip)[router]# ifconfig hbr0 mtu 1504 up	Установка нового максимального размера передаваемого пакета (фрейма) для интерфейса hbr0. Указанный размер на 4 байта больше обычного, что соответствует пакету, содержащему метку VLAN
als(cntx-ip)[router]# vconfig add hbr0 1000	Создание нового интерфейса hbr0.1000, который и будет представлять интерфейс hbr0 в управляющем VLAN с меткой 1000
als(cntx-ip)[router]# ifconfig hbr0.1000 172.16.1.10 netmask 255.255.0.0 up	Назначение адреса 172.16.1.10 с маской подсети 255.255.0.0 для интерфейса hbr0.1000 с последующим включением этого интерфейса
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую

Последовательность действий для настройки управления устройством по VLAN

Для удаления интерфейса hbro из VLAN 1000, нужно выполнить приведенную ниже

команду:

als(cntx-ip)[router]# vconfig rem hbr0.1000

3.2.4. Назначение шлюза по умолчанию

Локальная сеть, в которой находится станционное оборудование и рабочие станции, с которых производится конфигурирование, может быть построена таким образом, что первое и последние находятся в разных сегментах (подсетях). При этом подсети могут соединяться с помощью маршрутизатора.

В этом случае на ADSL2+ IP DSLAM необходимо настроить «шлюз по умолчанию» (default gateway), т.е. указать маршрутизатор, через который устройство будет отправлять ответы на запросы с рабочих станций. Сделать это можно с помощью следующих команд:

Таблица З

Команда	Описание
als\$> context ip router	Переход в режим конфигурирования контекста IP Router (маршрутизатор)
als(cntx-ip)[router]# route 0.0.0.0 0.0.0.0 gateway 172.16.1.111	Указание хоста, на котором есть интерфейс с IP-адресом 172.16.1.111, в качестве шлюза по умолчанию. Естественно, конфигурируемый ADSL2+ IP DSLAM должен находиться в той же подсети, что и указанный сетевой интерфейс
als(cntx-ip)[router]# copy running-config startup-config	Сохранение текущей конфигурации в стартовую

Последовательность действий для настройки шлюза по умолчанию

3.2.5. Смена режима работы портов Uplink

Порты Uplink, имеющиеся на ADSL2+ IP DSLAM, могут работать в двух режимах: Gigabit и FastEthernet. Тот или иной режим следует выбирать в зависимости от того, на работу с какой скоростью передачи данных рассчитано сетевое оборудование, к которому будет подключаться ADSL2+ IP DSLAM. Так например, если устройство включается в локальную сеть с помощью гигабитного коммутатора (скорость до 1 Гбит/с), то необходимо, чтобы uplink-порт на устройстве работал в режиме Gigabit Ethernet. Если же используется, например, коммутатор Fast Ethernet (100 Мбит/с), то и uplink-порт должен работать в том же режиме.

По умолчанию для портов uplink установлен режим Gigabit Ethernet.

Для того чтобы изменить режим работы uplink, нужно выполнить следующие шаги:

Таблица 4

Последовательность действий для выбора режима nopma Uplink

Команда	Описание
als\$> context dslam	Переход в режим конфигурирования контекста DSLAM

Команда	Описание
als(cntx-dslam)# uplink mode fe	Установка режима FastEthernet для портов uplink
als(cntx-dslam)# copy running-config startup- config	Coxpaнeниe текущей конфигурации в стартовую, чтобы при перезагрузке системы сохранился установленный режим uplink
als(cntx-dslam)# reboot	Перезагрузка системы. Внимание! При изменении режима работы портов Uplink перезагрузка системы обязательна

3.2.6. Использование каскадирования портов Uplink

ADSL2+ IP DSLAM поддерживает возможность каскадирования uplink-портов. Благодаря этому становится возможно использовать один uplink-канал для подключения к сети сразу нескольких устройств. При этом к устройствам, находящимся в каскаде, применяется следующая терминология:

Позиция в каскаде	Описание	
top	«Верх». Данный блок ADSL2+ IP DSLAM является первым в каскаде, и именно он соединяется с сетью оператора связи. Для подключения к ней используется верхний порт uplink0. Соответственно, для соединения со следующим устройством в каскаде используется <i>нижний</i> порт uplink1	
bottom	«Низ». Данный блок является последним в каскаде. Для каскадирования используется <i>верхний</i> порт uplink0	
center	«Центр». Данное устройство находится в середине каскада и должно пропускать трафик, предназначенный для следующих за ним устройств транзитом. Поэтому для соединения с каскадом на блоке этого типа используются <i>оба nopma</i> Uplink	

Схематическое изображение каскада из ADSL2+ IP DSLAM приведено ниже:

Для того чтобы можно было объединить несколько устройств ADSL2+ IP DSLAM в каскад, необходимо, чтобы их Uplink-порты работали в одинаковом режиме: Gigabit или FastEthernet.

Устройства в каскаде могут соединяться как прямым, так и перекрестным сетевым кабелем. При этом в конфигурации соединяемых устройств должна быть включена функция autonegotiation для портов Uplink (например, для uplink0: port uplink uplink0 autonegatiation).

По умолчанию режим каскадирования портов Uplink выключен и соответствующий параметр конфигурации имеет значение none. Для того чтобы изменить режим работы uplink, нужно выполнить следующие шаги:

Таблица 5

Команда	Описание	
als\$> context dslam	Переход в режим конфигурирования контекста DSLAM	
als(cntx-dslam)# uplink cascading top	Назначение данного ADSL2+ IP DSLAM первым устройством каскада	
als(cntx-dslam)# copy running-config startup- config	Сохранение текущей конфигурации в стартовую, чтобы при перезагрузке системы сохранился установленный режим каскадирования	
als(cntx-dslam)# reboot	Перезагрузка системы. Внимание! При изменении режима каскадирования перезагрузка системы обязательна	

Последовательность действий для выбора режима каскадирования

3.2.7. Резервирование портов Uplink

Данная возможность позволяет ADSL2+ IP DSLAM в случае отказа одного из портов

Uplink автоматически восстановить соединение с сетью через резервный порт. Для этого при подключении к сети оператора связи должны быть задействованы оба Uplink-порта устройства.

Проверка соединения с Uplink-портом производится с помощью периодической отправки ICMP-пакетов (ping) заданному в конфигурации хосту. Выбранный хост всегда должен быть доступен по сети, поскольку именно по получению или неполучению ответов то него ADSL2+ IP DSLAM может судить о наличии или отсутствии соединения с сетью через активный в данный момент порт Uplink.

Схема работы резервирования портов приведена на рисунке ниже:

По умолчанию режим резервирования портов Uplink выключен. Для того чтобы включить резервирование uplink, нужно выполнить следующие шаги:

Таблица 6

Последовательность действий для включения режима резервирования

Команда	Описание	
als\$> port uplink uplink0	Переход в режим конфигурирования порта uplink0	
als(port)[uplink uplink0]# no bind	Отключить статическую привязку к соответствующему интерфейсу Communication	
als(port)[uplink uplink0]# bind redundant	Включить динамическую привязку	
als\$> port uplink uplink1	Переход в режим конфигурирования порта uplink1	
als(port)[uplink uplink1]# no bind	Отключить статическую привязку к соответствующему интерфейсу Communication	
als(port)[uplink uplink1]# bind redundant	Включить динамическую привязку	
als\$> service uplinkRedundancy	Переход в режим конфигурирования сервиса резервирования Uplink	

Команда	Описание
als(service) [uplinkRedundancy]# interface communication com0	Переход к конфигурированию группы резервирующих портов, связываемых динамически с данным интерфейсом Communication
als(uplinkRedundancy) [com0]# host 172.16.0.111	Указание IP-адреса контрольного хоста для проверки соединения
als(uplinkRedundancy) [com0]# element uplink0	Добавление порта uplink0 в группу резервирования
als(uplinkRedundancy) [com0]# element uplink1	Добавление порта uplink1 в группу резервирования
als(uplinkRedundancy) [com0]# exit	Выход из редактирования параметров данной группы резервирования
als(service) [uplinkRedundancy]# no shutdown	Включение режима резервирования
als(service) [uplinkRedundancy]# copy running-config startup- config	Сохранение текущей конфигурации в стартовую

3.2.8. Настройка портов ADSL с использованием профилей

Порты ADSL имеют гибкий набор настроек, обеспечивающих работу каждого порта. Часть настроек применяется на самом порту, часть в профилях, которые используют эти порты.

Для того чтобы изменить режим работы порта, значения пределов помехоустойчивости и скорость порта для downstrem и upstream используется набор профилей. ПортADSL использует профиль ADSLTEMPLATE, который в свою очередь использует два профиля (ADSL и ADSLCHANNEL), в которых и содержатся значения режима работы, пределов помехоустойчивости и скорости порта.

Для того чтобы изменить настройки порта (режим работы порта, значения пределов помехоустойчивости и скорость порта для downstrem и upstream) таким образом, что они будут отличаться от настроек всех остальных портов необходимо выполнить следующие шаги:

Таблица 7

Последовательность действий настройки портов ADSL с использование профилей

Команда	Описание	
als\$> profile adsl prfadsl1	Создание нового профиля ADSL со значениями по- умолчанию и переход в режим его настройки	
als(profile)[adsl prfadsl1]# mode G_DMT_BIS	Установить модуляцию согласно стандарту ITU G.992.3 (G.Dmt.Bis)	

als(profile)[adsl prfadsl1]# mode G_DMT_BIS_AnnM	Установить модуляцию согласно стандарту ITU G.992.3 (G.Dmt.Bis) Annex M. С учетом предыдущего шага порт будет иметь возможность подключаться в одном из режимов модуляции	
als(profile)[adsl prfadsl1]# snr ds 7	Установить значение предела помехоустойчивости в децибелах в направлении downstream	
als(profile)[adsl prfadsl1]# snr us 7	Установить значение предела помехоустойчивости в децибелах в направлении upstream	
als(profile)[adsl prfadsl1]# profile adslchannel prfadslch1	Создание нового профиля ADSLCHANNEL со значениями по-умолчанию и переход в режим его настройки	
als(profile)[adslchnl prfadslch1]# maxrate ds 8100	Установить скорость порта для downstream в 8100 Кбит/сек	
als(profile)[adslchnl prfadslch1]# maxrate us 512	Установить скорость порта для upstream в 512 Кбит/сек	
als(profile)[adslchnl prfadslch1]# profile adsltemplate prfadsltm1	Создание нового профиля ADSLTEMPLATE со значениями по-умолчанию и переход в режим его настройки	
als(profile)[adsltmpl prfadsltm1]# use adsl prfadsl1	Использовать указанный профиль ADSL	
als(profile)[adsltmpl prfadsltm1]# use adslchannel prfadslch1	Использовать указанный профиль ADSLCHANNEL	
als(profile)[adsltmpl prfadsltm1]# port adsl adsl0	Переход в режим настройки порта adsl0	
als(port)[adsl_adsl0]# use adsltemplate prfadsltm1	Использовать указанный профиль ADSLTEMPLATE для порта adsl0. Внимание! Обновление вступает в силу сразу после изменения одного из параметров. Соединение на порту adsl0 автоматически переустановится с учетом значений, указанных в стеке профилей	
als(port)[adsl_adsl0]# copy running-config startup- config	Сохранение текущей конфигурации в стартовую, чтобы при перезагрузке системы сохранились установленные настройки	

3.2.9. Запуск службы Web-конфигуратора

Для того чтобы иметь возможность управления ADSL2+ IP DSLAM при помощи Webконфигуратора, необходимо, чтобы на устройстве был запущен специальный сервис - Web. По умолчанию в заводской конфигурации этот сервис отключен.

Запустить службу Web-конфигуратора можно с помощью следующей команды:

Таблица 8

Последовательность действий для запуска службы Web-конфигуратора

Команда	Описание
als\$> service web no shutdown	Запуск службы Web-конфигуратора

3.2.10. Service SNMP

Simple Network Management Protocol (SNMP) – это протокол прикладного уровня, который позволяет осуществлять обмен управляющей информацией между сетевыми устройствами. SNMP дает возможность управлять эксплуатационными характеристиками сети, находить и устранять неисправности в работе сети, осуществлять мониторинг текущих параметров сетевых устройств.

Сеть, управляемая SNMP, состоит из трех ключевых компонентов: управляемые устройства, агенты и системы управления сетью.

Управляемое устройство – сетевой узел, на котором установлен агент SNMP. Управляемые устройства собирают и сохраняют информацию о своем текущем состоянии и обеспечивают доступность этой информации для системы управления сетью. Для получения доступа к информации необходимо указание параметра community name. В данном случае, в роли управляемых устройств выступают блоки MKC-IP.

Агент – модуль программного обеспечения управления сетью, который находится на управляемом устройстве. Агент имеет доступ к информации об устройстве и транслирует эту информацию в форму, совместимую с SNMP. Так, параметры устройства с точки зрения SNMP представляются в виде «объектов», которые хранится в иерархической форме в Базе Информации Управления (Management Information Base, MIB). Каждый объект в иерархии MIB обладает уникальным идентификатором (Object Identifier, OID), с помощью которого можно получить доступ к данному объекту.

Система управления сетью – набор приложений, которые обеспечивают мониторинг и управление сетевыми устройствами.

3.2.10.1. Настройка протокола SNMP

Для перехода в режим настройки протокола SNMP необходимо выбрать соответствующий сервис, в данном случае SNMP.

als\$> service snmp		
als(service)[snmp]#		

После перехода в сервис системная подсказка отобразит информацию, соответствующую этому сервису. При нажатии *<Tab>* отобразится список доступных в этом

сервисе команд.

als(service)[sr	1mp]#
Настрой	ка параметров запуска SNMP
system	Установка места расположения системы и контактной информации
community	Установить сообщество (community) только для чтения и для чтения/записи
host	Установка хоста, с которого разрешен доступ к SNMP-агенту
user	Добавление/удаление пользователей SNMPv3
trap2sink	Добавление/удаление адресатов SNMP-трапов (trap)
informsink	Добавление/удаление адресатов SNMP-уведомлений (inform)
monitordelay	Установка частоты опроса MIB-объектов, при изменении которых отправляются
тр	апы из интервала [1, 300] в секундах
show	Просмотр конфигурации SNMP
shutdown	Остановить агент SNMP
als(service)[sr	1mp]#

Для конфигурирования сервиса SNMP необходимо выполнить следующие задачи:

Таблица 9

Команда	Описание	
als(service)[snmp]# system contact Ivan_Ivanovich_Ivanov als(service)[snmp]# system location Telefonnya_Stanciya	Установка места расположения системы и контактной информации	
als(service)[snmp]# community read ro alsservice)[snmp]# community write rw	Установка community name только для чтения и для чтения/записи	
als(service)[snmp]# host all COmmunity read als(service)[snmp]# host 172.16.0.67 community write	Установка хоста, с которого разрешен доступ к SNMP-агенту. Существует возможность предоставить доступ всем хостам при помощи ключевого слова all	
als(service)[snmp]# trap2sink add 172.16.3.3	Добавление/удаление адресатов SNMP-трапов (trap)	
als (service)[snmp]# informsink add 172.16.0.66	Добавление/удаление адресатов SNMP-уведомлений (inform)	
als(service)[snmp]# monitordelay 30	Установка частоты опроса МІВ-объектов, при изменении которых отправляются трапы	

Последовательность действий для конфигурирования сервиса SNMP

Также для более защищенного доступа к управляемым устройствам имеется возможность использовать версию 3 протокола SNMP, которая позволяет организовать разграничение доступа на уровне пользователей.

При создании пользователя SNMP требуется указание паролей для аутентификации и для шифрования соединения. Эти задачи реализованы с помощью алгоритмов MD5 и DES соответственно. Следует заметить, что пароли при вводе не отображаются на экран.

Для того чтобы изменения конфигурации, связанные с добавлением/удалением пользователей, вступили в силу, необходимо перезапустить сервис SNMP.

Добавление пользователя SNMPv3 с правами только для чтения:

als(service)[snmp]# user add techuser ro Введите пароль для аутентификации нового пользователя (не менее 8 символов):

Введите пароль для шифрования соединения: (нажмите Enter для повторного использования аутентифицирующего пароля)

3.2.11. Обновление ПО

Обновления программного обеспечения ADSL2+ IP DSLAM устанавливаются только по сети с использованием протокола TFTP. При этом устройство выступает в качестве клиента, а рабочая станция, с которой производится обновление, — в качестве сервера. Соответственно, на ПК должен быть установлен и запущен сервер TFTP. Если потребуется, его можно загрузить с сайта «Компании АЛСиТЕК» (<u>http://alstec.ru</u>).

После установки сервера необходимо указать его корневую директорию, содержимое которой будет доступно для загрузки. Для этого нужно в меню *«File»* выбрать пункт *«Configure»*, перейти на вкладку *«TFTP Root Directory»* и указать диск и директорию. Ниже показан пример данного окна:

Окно выбора корневой директории
сервера TFTP
TFTP Server Configuration
TFTP Root Directory Security Advanced Security Auto-Close Log
CN
OK Cancel Help
Рисунок 9

Кроме того, на вкладке «Security» нужно выбрать пункт «Transmit and Receive files», для того чтобы включить возможность передачи и приема файлов с сервера.

Настройка параметров	
безопасности сервера TFTP	
🗄 TFTP Server Configuration 🔀	
TFTP Root Directory Security Advanced Security Auto-Close Log	
The TFTP Server can be configured to allow receiving of files only, transmitting of files only, or allow both, transmitting and receiving.	
 Transmit only Transmit and Receive files 	
OK Cancel Help	
Рисунок 10	

Произведя указанные настройки, оставьте основное окно программы открытым.

В выбранную корневую директорию сервера нужно скопировать файл обновления. После этого нужно подключиться к ADSL2+ IP DSLAM по протоколу Telnet или по COMпорту, войти в систему и выполнить следующую команду:

Таблица 10

Последовательность действий для установки обновления

Команда	Описание	
als\$> copy tftp:// 172.16.0.116/update flash:	Копирование файла обновления update с cepвера TFTP с IP-адресом 172.16.0.116	
als\$> reboot	Перезапуск системы. Примечание. Перезагружать устройство можно не сразу после обновления, а когда будет удобно. Но следует помнить, что окончательно обновление будет установлено только после перезагрузки	

В процессе обновления на экран консоли будут выводиться принимаемые устройством байты файла обновления в качестве индикации. По завершении его установки на экране отобразится соответствующее сообщение.

3.3. Пример настройки соединения от ADSL порта к UPLINK порту

Данный раздел содержит инструкцию по установке простейшей связи между ADSL

портом абонента и UPLINK портом.

Перед прочтением для лучшего теоретического понимания описываемых процедур рекомендуется просмотреть раздел 3.2.Начальная настройка.

В данном разделе будет уделяться большее внимания принципам настройки соединения от ADSL порта к UPLINK порту. Так же будет опущена информация о профайлах интерфейса AAL5 и инкапсулированного в него encapsulation ethernet, порта ADSL. Сценарию, описанному ниже, соответствует стандартная конфигурация os_adsl_v2-factory1.

3.3.1. Последовательность действий при настройке

Основные задачи по конфигурированию контекста, связанных с ним интерфейсов и портов:

- Вход в контекст DSLAM.
- Создание интерфейса DSLAM_BRIDGE (как минимум с одним интерфейсом COMMUNICATION) и его активизация.
- Активизация интерфейса АТМ.
- Создание, связывание и активизация интерфейса AAL5.
- Определение типа инкапсулированного в AAL5 протокола, его связывание и активизация.
- Связывание порта UPLINK и его активизация.
- Активизация порта ADSL.

После входа в контекст и выполнения основных задач конфигурации становится возможным конфигурация дополнительных настроек интерфейсов.

По окончании данного раздела должен получиться работающий набор интерфейсов, изображенных на рисунке 1:

3.3.2. Вход в контекст DSLAM

Интерфейс командной строки (CLI) ADSL2+ IP DSLAM имеет предварительно определенный контекст DSLAM, в котором содержатся настройки всех интерфейсов устройства. Поэтому перед непосредственной конфигурацией необходимо перейти в этот контекст.

Таблица 11

Последовательность действий для входа в контекст DSLAM

Шаг	Действие	Описание действия
1.	als\$> context dslam	Переход в режим конфигурации контекста DSLAM

3.3.3. Создание и активация интерфейса DSLAM_BRIDGE

Обычный DSLAM работает как коммутатор (L2 switch). Следовательно, ему нужен мост (bridge), который будет передавать пакеты с одного Ethernet-совместимого порта, подключенного к нему, на другой. С одной стороны в мост включен порт Uplink, который передает Ethernet-фреймы, с другой стороны – Ethernet-интерфейсы, которые передают данные от порта ADSL. Интерфейс Bridge в DSLAM – это программно-аппаратный объект, и у него есть некоторые особенности, делающие его непохожим на обычный мост. Для того чтобы это подчеркнуть, интерфейс называется Dslam_bridge.

Для создания и активизации нового моста необходимо выполнить следующие шаги:

Таблица 12

Последовательность действий для создания и активации интерфейса DSLAM_BRIDGE

Шаг	Действие	Описание действия
1.	als(cntx-dslam)# interface dslam_bridge br0	Создание и переход в режим конфигурирования нового мостового интерфейса br0
2.	als(interface)[dslam_bridge br0]# communication com0	Создание интерфейса соединения (Communication) с именем СОМО внутри моста-мультиплексора brO. Данный тип интерфейсов активируется автоматически при создании моста. В дальнейшем именно через этот интерфейс будет проходить трафик между абонентским портом и портом Uplink
3.	als(interface)[dslam_bridge br0]# no shutdown	Включение интерфейса br0

Интерфейс Dslam_bridge может содержать в себе несколько объектов Communication. К одному интерфейсу Communication можно привязать только один порт Uplink. Это особенность аппаратной реализации. Таким образом, если в мост необходимо добавить несколько Uplink-портов, то для каждой привязки нужно создавать собственный Communication. Поясним рисунком:

Пакеты, приходящие с порта ADSL0 пойдут на UPLINK0. Пакеты, приходящие с порта ADSL1 пойдут на UPLINK1. Т.е. мост жестко устанавливает соединение между ADSL и

UPLINK в upstream направлении, а не определяет это по mac learning алгоритму. Это и есть особенность аппаратной реализации моста.

Тем не менее, все остальные функции бриджа (например: STP, управление со всех портов по одному IP) выполняются для всех COMMUNICATION на уровне моста.

В простом случае не имеет смыла использование двух и более объектов COMMUNICATION, но такая возможность оставлена.

После этой операции схема приняла вид:

3.3.4. Активация интерфейса АТМ

Для того чтобы начался прием ATM из порта ADSL, необходимо активировать связанный с этим портом ATM-интерфейс.

Таблица 13

Последовательность действий для активации интерфейса АТМ

Шаг	Действие	Описание действия
1.	als(cntx-dslam)# interface atm atm0	Переход в режим конфигурирования интерфейса atm0
2.	als(interface)[atm atm0]# no shutdown	Включение интерфейса atmo

Интерфейс ATM не надо связывать с портом ADSL, т.к. эта связь постоянна (выполнена на аппаратном уровне). Каждому ADSL-порту соответствует интерфейс ATM с тем же номером.

После того, как интерфейс был активизирован изменений в нашей схеме не произошло,

т.к. не было добавлено ни интерфейсов, ни связок.

3.3.5. Создание, связывание и активация интерфейса AAL5

Интерфейс AAL5 отвечает за выборку из интерфейса ATM ячеек с заданными значениями полей VPI/VCI и их сборку в пакеты Ethernet / IP / PPP (в зависимости от типа инкапсуляции).

Таблица 14

Шаг	Действие	Описание действия
1.	als(interface)[atm atm0]# interface aal5 aal50	Создание нового интерфейса aal50, который реализует протокол AAL5. Эта команда также переводит CLI в режим конфигурирования созданного интерфейса
2.	als(interface)[aal5 aal50]# bind atm0	Связывание интерфейсов aal50 и atm0
3.	als(interface)[aal5 aal50]# no shutdown	Включение интерфейса aal50
4.	als(interface)[aal5 aal50]# encapsulation ethernet	Создание интерфейса инкапсуляции типа Ethernet (для режима Ethernet через ATM) для данного AAL5 и переход в режим конфигурирования созданного интерфейса

Последовательность действий для создания, связывания и интерфейса АТМ

Таким образом, после выполнения описанных команд наша схема имеет вид:

AAL5 интерфейс поддерживает различные типа инкапсулированных пакетов:

ETHERNET/IP/PPP. Следующим шагом будет задание и настройка типа инкапсуляции.

3.3.6. Определение типа интерфейса инкапсуляции, его связывание и активация

Интерфейс Encapsulation нужен для того, чтобы передавать дальше собранные интерфейсом AAL5 пакеты из ATM-ячеек, которые пришли с порта ADSL, а также для приема пакетов, пришедших с порта Uplink, и передачи их на интерфейс AAL5.

Таблица 15

Последовательность действий для задания типа инкапсулирующего интерфейса, его

Шаг	Действие	Описание действия
1.	als(interface)[aal5 aal50]# encapsulation ethernet	Создание интерфейса инкапсуляции типа Ethernet (для режима Ethernet через ATM) для данного AAL5 и переход в режим конфигурирования созданного интерфейса
2.	als(aal5)[encap ethernet]# bind com0	Связывание интерфейса encapsulation с интерфейсом Communication сомо
3.	als(aal5)[encap ethernet]# no shutdown	Активация текущий интерфейса инкапсуляции

связывания и активации

В настоящее время ADSL2+ IP DSLAM поддерживает только инкапсуляцию типа ETHERNET.

Команда создания типа инкапсуляции делает сразу несколько действий. Если у интерфейса AAL5 не было связанного с ним верхнего интерфейса, то такой интерфейс создается и с ним устанавливается связка. Если же интерфейс был указанного в команде типа, то эта команда просто переходит в режим его редактирования. Если тип не совпадает – команда возвращает ошибку.

Таким образом, после выполнения описанных команд наша схема имеет вид:

Теперь, когда все необходимые интерфейсы и порты созданы, и пакеты могут проходить от порта ADSL до моста и обратно, осталось только связать и активировать порты Uplink и ADSL.

3.3.7. Связывание и активация порта UPLINK

Для того, чтобы пакеты могли приходить на мост со стороны Uplink-порта, его необходимо связать с этим мостом. Для этого нужно выполнить следующие действия:

Таблица 16

Шаг	Действие	Описание действия
1.	als(aal5)[encap ethernet]# port uplink uplink0	Данная команда переводит пользователя в режим редактирования настроек порта uplink0
2.	als(port)[uplink uplink0]# bind com0	Связывание порта uplink0 с Communication com0
3.	als(port)[uplink uplink0]# no shutdown	Включение текущего порта uplink0

Последовательность действий для связывания и активации nopma Uplink

После выполнения описанных команд наша схема имеет вид:

Фактически, мы уже получили требуемую структуру, но она пока работать не будет. Осталось сделать последнюю вещь – включить ADSL порт.

3.3.8. Активация порта ADSL

Активация порта ADSL включает физический порт. Только после того, как порт будет включен, модем, присоединенный к этому порту, обнаружит, что он с чем-то соединен, и попытается установить связь.

Для включения нужно выполнить команды:

Таблица 17

Последовательность действий для активации ADSL порта

Шаг	Действие	Описание действия
1.	als(port)[uplink uplink0]# port adsl adsl0	Переход в режим редактирования настроек порта ads10
2.	als(port)[adsl_adsl0]# no shutdown	Активация ADSL-порта ads10

После установления соединения с модемом DSLAM начнет передавать пакеты от пользователя в сеть (upstream) и из сети к пользователю (downstream).

3.4. Проверка системы

Внешний вид ADSL2+ IP DSLAM и изображение его лицевой панели приведены ниже:

На лицевой панели платы ADSL2+ IP DSLAM располагаются следующие элементы управления:

- 8, 16 или 32 светодиодов (в зависимости от комплектации), показывающих состояние каналов ADSL;
- светодиоды «ПИТ», индуцирующие общее состояние системы;
- тумблер питания (положение вверх питание включено, положение вниз питание выключено);
- 2 Uplink-порта Gigabit/Fast Ethernet для подключения сетевых интерфейсов;
- порт *«USB»* для подключения USB Flash, необходимого в случае локального обновления системы;
- порт RS-232 «СОМ» для подключения ПК, с которого производится конфигурация устройства.

3.4.1. Внешняя индикация состояния устройства

К внешней индикации состояния ADSL2+ IP DSLAM относится набор светодиодов, расположенных на лицевой панели блока. Ниже приводится назначение отдельных светодиодов и их возможных сигналов:

- 32 светодиода, показывающих состояние каналов ADSL:
 - моргание светодиода обозначает процесс установки связи устройства и абонентского модема для соответствующего канала;
 - постоянное свечение показывает, что связь установлена;
- светодиоды «ПИТ», индицирующие общее состояние системы:
 - медленное моргание зеленого светодиода (1 раз в 2 секунды) показывает, что устройство работает в нормальном режиме;
 - моргание красного светодиода при работе говорит о возникновении некритических ошибок во время работы, таких как неправильная конфигурация, отбрасывание пакетов, перегрузка и др.

При загрузке ADSL2+ IP DSLAM подается следующая последовательность сигналов: попеременное моргание красного и зеленого светодиодов в начале загрузки, моргание только красного светодиода (начальная стадия загрузки ПО), снова попеременное моргание обоих светодиодов и единоразовое моргание всех светодиодов каналов ADSL (применение конфигурации).

3.4.2. Просмотр текущей конфигурации и статистики

Текущая конфигурация (running-config) показывает актуальные параметры устройства во время его работы. Она может отличаться от загрузочной конфигурации (startup-config), т.к. оператор может, например, временно изменить некоторые настройки устройства и не сохранять их.

Для просмотра текущей конфигурации нужно выполнить следующую команду CLI:

show running-config

Часто требуется просмотреть только часть общей конфигурации: например, отдельного интерфейса или профиля. Для этого используются команды типа show config, которые доступны в соответствующих разделах конфигурации. Например, для просмотра настроек порта ADSL10 можно выполнить команду

port adsl adsl10 show config

Получить статистику по какому-либо интерфейсу или порту можно с помощью похожей команды - show status. Например:

port adsl adsl10 show status

При этом в большинстве случаев слово status необязательно, и статистика точно так же отображается с помощью команды show. Кроме того, имеется возможность периодического вывода данных статистики с помощью команды show repeat. Период вывода также является настраиваемым. Ниже приводится пример команды для отображения статистики с периодом 10 секунд:

port adsl adsl10 show repeat 10

3.4.3. Отображение состояния линий ADSL

Ha ADSL2+ IP DSLAM имеется специальная утилита adsl_monitor, которая позволяет в наглядном виде получать информацию о состоянии выбранных портов ADSL. Отображаемые данные обновляются в реальном времени. Указанная программа доступна из CLI, и в качестве необязательных параметров принимает имя интересующего абонентского порта и количество портов. По умолчанию по команде adsl_monitor на экран выводятся данные по первым восьми портам ADSL. Для того чтобы узнать состояние портов, например, от adsl10 до adsl15, можно выполнить следующую команду:

adsl_monitor adsl10 count 6

Для каждого порта отображается следующая информация:

Таблица 18

Параметр	Описание
State	 Состояние порта. К основным состояниям относятся: 3. DISABLED — порт выключен 4. EXCPTN — возникло исключение 5. HNDSHK — происходит обработка начальных сигналов установки соединения с абонентским оборудованием 6. TRNNG / ANLS / EXCHNG - пробный обмен данными, завершающие этапы соединения 7. IDLE1 — порт включен, но абонентское оборудование не подключено 8. SHOWTIME - установка соединения успешно завершена, интерфейс готов к приему и оправке данных (к линии подключен модем) 9. SELTACT — происходит измерение параметров линии с помощью SELT

Параметр	Описание
Mode	 Тип модуляции. Имеются следующие типы: 10. АUTO - автоматический режим установления модуляции ADSL. (Выбор идет между G.Dmt, G.Dmn.Bis и G.Dmt.Bis.Plus) 11. DMT - модуляция согласно стандарту ITU G.992.1 (G.Dmt) 12. LITE - модуляция согласно стандарту ITU G.992.2 (G.Lite) 13. DMT_BIS - модуляция согласно стандарту ITU G.992.3 (G.Dmt.Bis) 14. LITE_BIS - модуляция согласно стандарту ITU G.992.4 (G.Lite.Bis) 15. DMT_BIS_+ - модуляция согласно стандарту ITU G.992.5 (G.Dmt.Bis.Plus) 16. G. AnnM - модуляция согласно стандарту ITU G.992.3 (G.Dmt.Bis) Annex M 17. G_AnnM+ - модуляция согласно стандарту ITU G.992.5 (G.Dmt.Bis.Plus) 18. GAnnL - модуляция согласно стандарту ITU G.992.3 (G.Dmt.Bis) Annex M 19. T1 413 - модуляция согласно стандарту ANSL T1 413i2
Lp u/d	Режим буферизации для передаваемых по ADSL-каналу данных в обоих направлениях: 20. Int — interleaved, режим буферизации 21. Fst — fast, режим передачи данных без буферизации
Dp u/d	Значение глубины буферизации данных в обоих направлениях. Допустимые значения — от 1 до 64
Dl u/d	Значение времени задержки данных в миллисекундах при буферизации в обоих направлениях. Допустимые значения — от 0 до 18
Snr u/d	Значение предела помехоустойчивости в децибелах. Допустимые значения — от 0 до 31
SpeedUs/SpeedD s	Максимальная пропускная способность (скорость) канала в обоих направлениях в Кбит/с
Avg us/Avg ds	Средняя реальная скорость передачи данных по каналу в Кбит/с
Cell us/Cell ds	Число полученных / переданных ячеек АТМ
HEC us/HEC ds	Количество ошибок Header Error Control (HEC) в обоих направлениях
FEC us/FEC ds	Количество ошибок Forward Error Correction (FEC) в обоих направлениях
CRC us/CRC ds	Количество ошибок Cyclic Redundancy Check (CRC) в обоих направлениях
Uptime/Tuptime	Время, в течение которого порт находился в состоянии SHOWTIME с момента его последнего включения / общее время работы порта с момента включения ADSL2+ IP DSLAM (формат ДД ЧЧ:MM)

Наряду с консольной версией монитора ADSL-портов существует web-версия, доступная в разделе меню «Диагностика» в Web-конфигураторе при включенном сервисе

web (service web no shutdown). Отображаемые этой версией монитора параметры линий ADSL совпадают с описанными выше.

3.4.4. Измерение параметров линий ADSL

Благодаря поддержке механизма SELT (Single-Ended Line Testing) ADSL2+ IP DSLAM позволяет проводить одностороннее измерение некоторых параметров абонентской линии со стороны поставщика услуг широкополосного доступа. Как следует из названия, этот метод не требует никакого специального оборудования на стороне абонента: при проведении тестирования линия должна быть нетерминирована (или терминирована аналоговым телефоном с высоким сопротивлением). Таким образом, поставщик услуг связи имеет возможность проводить диагностику и выявлять проблемы кабельного хозяйства сети из единого центра и без дополнительного привлечения технического персонала.

Тестирование линии можно начать с помощью команды selt start в контексте соответствующего порта ADSL. Ниже приведен пример команды начала теста линии, подключенной к порту adsl10:

```
port adsl adsl10 selt start
```

При выполнении этой команды на экран будет выведено сообщение о том, что измерение параметров линии начато, а также индикация этого процесса. По окончании измерений, длящихся около 90 секунд, будет выведена полученная информация о линии. Она включает в себя следующие основные параметры:

Параметр	Описание
AM and Other NB Disturbers	Список частот и мощностей обнаруженных источников помех в линии
Loop Termination	Вид окончания линии: 22. short — линия терминирована 23. open - линия нетерминирована
Fault Detected	Обнаружена ли неисправность линии
Physical Loop Length	Примерная длина линии в метрах
Confidence	Оценочная точность указанной длины линии
Loop Loss 300 kHz Attenuation	Затухание линии при частоте 300kHz
Data Rate Estimates	Оценка потенциально достижимых скоростей передачи данных в обоих направлениях при использовании поддерживаемых стандартов ADSL, в Кбит/с
CO Modem	Модем на стороне провайдера
CPE Modem	Модем на стороне пользователя

Параметр	Описание
Noise Assumption	Предполагаемый уровень шума
Ниже приводится пример вывода результатов измерений SELT:	

AM and Other NB Disturbers Frequency Power There is no AM or other NB disturber. Loop Estimate Loop Termination : open Fault Detected : no Fault Detected: noPhysical Loop Length: 10 metersConfidence: 90% Loop Loss 300 kHz Attenuation : 0.06 dB Data Rate Estimates CO Modem : Generic CPE Modem : Generic Noise Assumption : AWGN -140.00 dBm/Hz ADSL AnxA US : 1508 ADSL AnxA DS : 12752 Noise Assumption : AWGN -140.00 dBm/Hz ADSL AnxB US : 1568 ADSL AnxB DS : 11188 Noise Assumption : AWGN -140.00 dBm/Hz ADSL2 AnxA US : 1508 ADSL2 AnxA DS : 12752 : AWGN -140.00 dBm/Hz Noise Assumption ADSL2 AnxB US : 1568 ADSL2 AnxB DS : 11188 Noise Assumption : AWGN -140.00 dBm/Hz ADSL2+ AnxA US : 1508 ADSL2+ AnxA DS : 27544 Noise Assumption : AWGN -140.00 dBm/Hz ADSL2+ AnxB US : 1568 ADSL2+ AnxB DS : 25976

Проведение теста линии также возможно с использованием Web-конфигуратора. Соответствующая страница называется «Линия» и доступна в разделе меню «Диагностика» в при включенном в конфигурации сервисе web (service web no shutdown).

3.4.5. Сведения о работе ПО

Для контроля за состоянием различных компонент ПО на ADSL2+ IP DSLAM имеется специальный сервис, использующий стандарт ведения системных журналов syslog. Коротко говоря, syslog позволяет запущенным приложениям и самой ОС записывать сообщения в

общий набор системных журналов («лог»), которые могут храниться там, где это наиболее удобно для программистов и сетевых администраторов. Подробность сообщений является конфигурируемой, благодаря чему можно сократить общее количество сообщений и ограничиться, например, только получением информации об ошибках, которые могут требовать вмешательства системного программиста.

Настройка соответствующего сервиса доступна в разделе конфигурации

service syslog

Здесь можно включить или выключить журналирование, настроить уровень важности получаемых сообщений и место их хранения (локально или удаленно). Кроме того, здесь же можно просмотреть имеющиеся на данный момент сообщения, а также удалить их.

ПРИЛОЖЕНИЕ 1

Назначение контактов 96-контактного разъема для абонентских линий платы ADSL2+

Полярность в линии ADSL неважна, поэтому контакты «ADSL A» и «ADSL B» в паре равнозначны.

ПРИЛОЖЕНИЕ 2

Назначение контактов разъема RJ-45

Общий вид разъема RJ-45 и розетки под него с указанием нумерации проводников приведены на рисунке ниже.

Расположение проводников для прямого кабеля:

RJ-45			N⁰	RJ-45	
TX+	Бело-оранжевый	1	1	Бело-оранжевый	TX+
TX-	Оранжевый	2	2	Оранжевый	TX-
RX+	Бело-зеленый	3	3	Бело-зеленый	RX+
	Синий	4	4	Синий	
	Бело-синий	5	5	Бело-синий	
RX-	Зеленый	6	6	Зеленый	RX-
	Бело-коричневый	7	7	Бело-коричневый	
	Коричневый	8	8	Коричневый	

Расположение проводников для перекрестного кабеля:

RJ-45				N⁰	RJ-45	
TX+	Бело-оранжевый	1	\sim	1	Бело-оранжевый	TX+
TX-	Оранжевый	2	$\neg \succ \frown$	2	Оранжевый	TX-
RX+	Бело-зеленый	3	<u>~</u> ~	3	Бело-зеленый	RX+
	Синий	4	$\neg X \sim$	4	Синий	
	Бело-синий	5	\rightarrow XX $-$	5	Бело-синий	
RX-	Зеленый	6	->>>	6	Зеленый	RX-
	Бело-коричневый	7		7	Бело-коричневый	
	Коричневый	8		8	Коричневый	

ПРИЛОЖЕНИЕ 3

Назначение контактов разъема RS-232 (СОМ)

Общий вид разъема RS-232 с указанием нумерации проводников и их назначением приведен на рисунке ниже.

ПРИЛОЖЕНИЕ 4

Назначение контактов сплиттера, вставляемого в плинт

ПРИЛОЖЕНИЕ 5

Типовая схема использования сплиттеров

СОКРАЩЕНИЯ

Сокращение	Расшифровка						
ADSL	Asymmetric Digital Subscriber Line (асимметричная цифровая абонентская линия)						
CLI	Command Line Interface (интерфейс командной строки)						
DSCP	Differentiated Services Code Point (точка кода дифференцированных услуг)						
DSLAM	Digital Subscriber Line Access Multiplexer (мультиплексор доступа цифровой абонентской линии)						
MSPU	Модуль системы передач, универсальный						
MSPU OC ADSL	ADSL на базе платформы MSPU						
QoS	Quality of Service (качество обслуживания)						
U	Unit (Стоечный юнит = 44,45 мм (или 1,75 дюйма))						
VLAN	Virtual Local Area Network (виртуальная локальная компьютерная сеть)						
БУН-21/6	Блок универсальный на 21 место - 6''						
OC	Операционная система						
ПК	Персональный компьютер						
ПО	Программное обеспечение						
ТфоП	Телефонная сеть общего пользования						
УИ-ШРО	Устройство интерфейсное ШРО						
ШРО	Шкаф распределительный оптический						

	Лист регистрации изменений									
Номера листов (страниц)										
Изм	Измененных	Замененных	Новых	Аннулиро- ванных	Всего листов (страниц) в докум	№ документа	Входящий № сопроводитель ного докум и дата	Подп	Дата	